K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 8 2016

điều kiên: 
b<>d <>0 
=> c<>0 
a=b+c 
=> a<>0 

c=(b.d):(b-d). 
=> c*(b-d)=b*d 
=>cb-cd=b*d 
=>cb=cd+bd 
=>=cb=d(b+c)=ad (vì b+c=a) 
cb=ad (từ cái này xoay kiểu gì cũng được) 
c:d=a:b 
a/b=c/d >>>dpcm 
c/a=d/b

10 tháng 2 2018

Dễ mà 

Ta có: \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\)

Áp dụng t/c dãy tỉ số bằng nhau:

Ta có: \(\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}=\frac{a-b}{c-d}\)(1)

Từ (1),

Ta có: \(\frac{a+b}{c+d}\cdot\frac{a+b}{c+d}=\frac{a+b}{c+d}\cdot\frac{a-b}{c-d}\)(nhân mỗi vế với \(\frac{a+b}{c+d}\))

Vậy \(\frac{\left(a+b\right)^2}{\left(c+d\right)^2}=\frac{\left(a+b\right)\left(a-b\right)}{\left(c+d\right)\left(c-d\right)}=\frac{a^2-b^2}{c^2-d^2}\)(đpcm)

1 tháng 11 2018

Câu hỏi của Lê Thị Trà MI - Toán lớp 7 - Học toán với OnlineMath Bạn xem bài làm tương tự ở link này nhé!

30 tháng 11 2017

b2 = ac \(\Rightarrow\frac{a}{b}=\frac{b}{c}\)( 1 )

c2 = bd \(\Rightarrow\frac{b}{c}=\frac{c}{d}\)( 2 )

Từ ( 1 ) và ( 2 ) suy ra : \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\)

từ \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\)\(\Rightarrow\)\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{a+b+c}{b+c+d}\)

\(\Rightarrow\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=\frac{\left(a+b+c\right)^3}{\left(b+c+d\right)^3}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :

\(\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=\frac{a^3+b^3+c^3}{b^3+c^3+d^3}=\left(\frac{a+b+c}{b+c+d}\right)^3\)

Vậy ...

30 tháng 11 2017

minh moi dang cau moi giup minh dc khong

12 tháng 2 2018

Ta có: \(\left(\frac{a+b+c}{b+c+d}\right)^3=\frac{\left(a+b+c\right)^3}{\left(b+c+d\right)^3}=\frac{a^3+b^3+c^3+2ab+2ac+2bc}{b^3+c^3+d^3+2bc+2bd+2cd}\)

13 tháng 8 2019

Vì \(\frac{a+c}{b+d}=\frac{a-c}{b-d}\)

\(\Rightarrow\frac{a}{b}=\frac{c}{d}\)

\(\Rightarrow\frac{a^{2009}}{b^{2009}}=\frac{c^{2009}}{d^{2009}}=\left(\frac{a}{b}\right)^{2009}=\frac{a^{2009}-c^{2009}}{b^{2009}-d^{2009}}\)( áp dụng tc của dãy tỉ số bằng nhau )

Vậy ...

Ta có với a,b,c,d là các số thực khác 0 

\(\Rightarrow\frac{a-b+c+d}{b}=\frac{a+b-c+d}{c}=\frac{a+b+c-d}{d}=\frac{b+c+d-a}{a}\)

\(\Rightarrow\frac{a-b+c+d}{b}+1=\frac{a+b-c+d}{c}+1=\frac{a+b+c-d}{d}+1=\frac{b+c+d-a}{a}+1\)

\(\Rightarrow\frac{a+c+d}{b}=\frac{a+b+d}{c}=\frac{a+b+c}{d}=\frac{b+c+d}{a}\)

Áp dụng tính chất dãy tỉ số bằng nhau, ta có: 

\(\Rightarrow\frac{a+c+d}{b}=\frac{a+b+d}{c}=\frac{a+b+c}{d}=\frac{b+c+d}{a}=\frac{3\left(a+b+c+d\right)}{a+b+c+d}=3\)

Ta có M= \(\left(\frac{a+c+d}{b}\right)\left(\frac{a+b+d}{c}\right)\left(\frac{a+b+c}{d}\right)\left(\frac{b+c+d}{a}\right)\)

=> M= 3.3.3.3 

=> M =81

11 tháng 12 2017

Áp dụng TC cuae DTSBN ta có:

a-b+c+d/b = a+b-c+d/c = a+b+c-d/d = b+c+d-a/a = \(\frac{a-b+c+d+a+b-c+d+a+b+c-d+b+c+d-a}{b+c+d+a}=\frac{3\left(a+b+c+d\right)}{a+b+c+d}=3\)

=> a-b+c+d/b = 3 => a-b+c+d = 3b => a+c+d = 4b

a+b-c+d/c = 3 => a+b-c+d = 3c => a+b+d = 4c

a+b+c-d/d = 3 => a+b+c-d = 3d => a+b+c = 4d

b+c+d-a/a = 3 => b+c+d-a = 3a => b+c+d = 4a

=> M = \(\frac{\left(a+b+c\right)\left(a+b+d\right)\left(b+c+d\right)\left(c+d+a\right)}{abcd}=\frac{4d.4c.4a.4b}{abcd}=\frac{256abcd}{abcd}=256\)

Vậy M = 256