Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: a/b=c/d
Áp dụng t/c dãy tỉ số bằng nhau:
a/b=c/d=(a+c)/(b+d)
=>(a/b)2009=(c/d)2009=(a+c)2009/(b+d)2009(1)
a/b=c/d => (a/b)2009=(c/d)2009
Áp dụng t/c dãy tỉ số bằng nhau, ta có:
(a/b)2009=(c/d)2009=a2009/b2009=c2009/d2009=(a2009+c2009)/(b2009+d2009)(2)
Từ (1)(2)=>....................
\(\frac{a}{b}=\frac{c}{d}=\frac{a+c}{b+d}\)(Tính chất dãy tỉ số bằng nhau)
=> \(\frac{a^{1994}}{b^{1994}}=\frac{c^{1994}}{d^{1994}}=\frac{\left(a+c\right)^{1994}}{\left(b+d\right)^{1994}}=\frac{a^{1994}+c^{1994}}{b^{1994}+d^{1994}}\)(Tính chất dãy tỉ số bằng nhau)
=> \(\frac{\left(a+c\right)^{1994}}{\left(b+d\right)^{1994}}=\frac{a^{1994}+c^{1994}}{b^{1994}+d^{1994}}\)
=> Đpcm
Câu 2 tớ đăng phía dưới rồi đó.
Câu 3 đang định đăng lên thì cậu đăng là sao hả?
Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk,c=dk\)
Vậy:
\(\frac{a\cdot c}{b\cdot d}=\frac{bk\cdot dk}{b\cdot d}=\frac{k^2\cdot\left[b\cdot d\right]}{b\cdot d}=k^2\)
và
\(\frac{2009a^2+2010c^2}{2009b^2+2010d^2}=\frac{2009\left[bk\right]^2+2010\left[dk\right]^2}{2009b^2+2010d^2}=\frac{2009\cdot b^2k^2+201d^2k^2}{2009b^2+2010d^2}=\frac{k^2\left[2009b^2+2010d^2\right]}{2009b^2+2010d^2}=k^2\)Vậy khi \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{ac}{bd}=\frac{2009a^2+2010c^2}{2009b^2+2010d^2}\)
a) căn 197 > căn 194 = 14
=> căn 194 > 14
b) Đặt a/b = c/d = K ( K thuộc N )
=> a = bK
c = dK
thay a = bK
c = dK vào cái cần chứng minh
thì chắc chắn chúng bằng nhau
\(\dfrac{a+c}{b+d}=\dfrac{a-c}{b-d}\)
\(\Leftrightarrow ab-ad+cb-cd=ab+ad-cb-cd\)
=>-2ad=-2cb
=>ad=cb
=>a/b=c/d
Đặt a/b=c/d=k
=>a=bk; c=dk
\(\dfrac{a^{2009}-c^{2009}}{b^{2009}-d^{2009}}=\dfrac{b^{2009}k^{2009}-d^{2009}k^{2009}}{b^{2009}-d^{2009}}=k^{2009}\)
\(\left(\dfrac{a}{b}\right)^{2009}=\left(\dfrac{bk}{b}\right)^{2009}=k^{2009}\)
Do đó: \(\dfrac{a^{2009}-c^{2009}}{b^{2009}-d^{2009}}=\left(\dfrac{a}{b}\right)^{2009}\)
Vì \(\frac{a+c}{b+d}=\frac{a-c}{b-d}\)
\(\Rightarrow\frac{a}{b}=\frac{c}{d}\)
\(\Rightarrow\frac{a^{2009}}{b^{2009}}=\frac{c^{2009}}{d^{2009}}=\left(\frac{a}{b}\right)^{2009}=\frac{a^{2009}-c^{2009}}{b^{2009}-d^{2009}}\)( áp dụng tc của dãy tỉ số bằng nhau )
Vậy ...