Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(M=\frac{19a+3}{1+b^2}+\frac{19b+3}{c^2+1}+\frac{19c+3}{a^2+1}\)
\(=19a-\frac{19ab^2-3}{b^2+1}+19b-\frac{19bc^2-3}{c^2+1}+\frac{19ca^2-3}{a^2+1}\)
\(\ge19\left(a+b+c\right)-\frac{19ab^2-3}{2b}-\frac{19bc^2-3}{2c}-\frac{19ca^2-3}{2a}\)
\(=19\left(a+b+c\right)-19\left(\frac{ab}{2}+\frac{bc}{2}+\frac{ca}{2}\right)+\frac{3}{2}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
\(\ge19.3-\frac{19.3}{2}+\frac{3}{2}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=\frac{19.3}{2}+\frac{3}{2}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
Lại có:
\(\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2\ge3\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)\ge3\frac{\left(1+1+1\right)^2}{ab+bc+ca}=\frac{3.9}{3}=9\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge3\)
\(\Rightarrow M\ge\frac{19.3}{2}+\frac{3}{2}.3=33\)
\(\)
Ta có : \(\frac{a}{a+\sqrt{2013a+bc}}=\frac{a}{a+\sqrt{a^2+ab+ac+bc}}=\frac{a}{a+\sqrt{\left(a+b\right)\left(a+c\right)}}\)
Theo bất đẳng thức Bunhiacopxki : \(\sqrt{\left(a+b\right)\left(c+a\right)}\ge\sqrt{\left(\sqrt{ac}+\sqrt{ab}\right)^2}=\sqrt{ab}+\sqrt{ac}\)
\(\Rightarrow\frac{a}{a+\sqrt{\left(a+b\right)\left(a+c\right)}}\le\frac{a}{a+\sqrt{ab}+\sqrt{ac}}=\frac{\sqrt{a}}{\sqrt{a}+\sqrt{b}+\sqrt{c}}\)
hay \(\frac{a}{a+\sqrt{2013a+bc}}\le\frac{\sqrt{a}}{\sqrt{a}+\sqrt{b}+\sqrt{c}}\)
Tương tự : \(\frac{b}{b+\sqrt{2013b+ac}}\le\frac{\sqrt{b}}{\sqrt{a}+\sqrt{b}+\sqrt{c}}\)
\(\frac{c}{c+\sqrt{2013c+ab}}\le\frac{\sqrt{c}}{\sqrt{a}+\sqrt{b}+\sqrt{c}}\)
Cộng các bất đẳng thức trên theo vế được \(\frac{a}{a+\sqrt{2013a+bc}}+\frac{b}{b+\sqrt{2013b+ac}}+\frac{c}{c+\sqrt{2013c+ab}}\le1\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}\frac{a}{b}=\frac{b}{c}=\frac{c}{a}\\a+b+c=2013\\a,b,c>0\end{cases}}\) \(\Leftrightarrow a=b=c=671\)
\(K=\frac{a^2}{c\left(a^2+c^2\right)}+\frac{b^2}{a\left(a^2+b^2\right)}+\frac{c^2}{b\left(b^2+c^2\right)}\left(a,b,c>0\right)\).
Ta có:
\(\frac{a^2}{c\left(a^2+c^2\right)}=\frac{\left(a^2+c^2\right)-c^2}{c\left(a^2+c^2\right)}=\frac{a^2+c^2}{c\left(a^2+c^2\right)}-\frac{c^2}{c\left(a^2+c^2\right)}\)\(=\frac{1}{c}-\frac{c^2}{c\left(a^2+c^2\right)}\).
Vì \(a,c>0\)nên áp dụng bất đẳng thức Cô-si cho 2 số dương, ta được:
\(a^2+c^2\ge2ac\).
\(\Leftrightarrow c\left(a^2+c^2\right)\ge2ac^2\).
\(\Rightarrow\frac{1}{c\left(a^2+c^2\right)}\le\frac{1}{2ac^2}\)
\(\Leftrightarrow\frac{c^2}{c\left(a^2+c^2\right)}\le\frac{c^2}{2ac^2}=\frac{1}{2a}\).
\(\Leftrightarrow-\frac{c^2}{c\left(a^2+c^2\right)}\ge-\frac{1}{2a}\).
\(\Leftrightarrow\frac{1}{c}-\frac{c^2}{c\left(a^2+c^2\right)}\ge\frac{1}{c}-\frac{1}{2a}\)
\(\Leftrightarrow\frac{a^2}{c\left(a^2+c^2\right)}\ge\frac{1}{c}-\frac{1}{2a}\left(1\right)\)
Dấu bằng xảy ra \(\Leftrightarrow a=c>0\) .
Chứng minh tương tự, ta được:
\(\frac{b^2}{a\left(a^2+b^2\right)}\ge\frac{1}{a}-\frac{1}{2b}\left(a,b>0\right)\left(2\right)\)
Dấu bằng xảy ra \(\Leftrightarrow a=b>0\)
Chứng minh tương tự, ta dược:
\(\frac{c^2}{b\left(b^2+c^2\right)}\ge\frac{1}{b}-\frac{1}{2c}\left(b,c>0\right)\left(3\right)\).
Dấu bằng xảy ra \(\Leftrightarrow b=c>0\).
Từ \(\left(1\right),\left(2\right),\left(3\right)\), ta được:
\(\frac{a^2}{c\left(a^2+c^2\right)}+\frac{b^2}{a\left(a^2+b^2\right)}+\frac{c^2}{b\left(b^2+c^2\right)}\ge\)\(\frac{1}{c}-\frac{1}{2a}+\frac{1}{a}-\frac{1}{2b}+\frac{1}{b}-\frac{1}{2c}\).
\(\Leftrightarrow K\ge\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)-\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\).
\(\Leftrightarrow K\ge\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\).
\(\Leftrightarrow K\ge\frac{1}{2}\left(\frac{ab+bc+ca}{abc}\right)\).
Mà \(ab+bc+ca=3abc\)(theo đề bài).
Do đó \(K\ge\frac{1}{2}.\frac{3abc}{abc}\).
\(\Leftrightarrow K\ge\frac{3abc}{2abc}\).
\(\Leftrightarrow K\ge\frac{3}{2}\).
Dấu bằng xảy ra.
\(\Leftrightarrow\hept{\begin{cases}a=b=c>0\\ab+bc+ca=3abc\end{cases}}\Leftrightarrow a=b=c=1\).
Vậy \(minK=\frac{3}{2}\Leftrightarrow a=b=c=1\).
Áp dụng bđt Cauchy-Schwarz: \(\frac{ab}{c+1}=\frac{ab}{c+a+b+c}=\frac{ab}{\left(a+c\right)+\left(b+c\right)}\le\frac{1}{4}\left(\frac{ab}{a+c}+\frac{ab}{b+c}\right)\)
Chứng minh tương tự: \(\hept{\begin{cases}\frac{bc}{a+1}\le\frac{1}{4}\left(\frac{bc}{a+c}+\frac{bc}{a+b}\right)\\\frac{ac}{b+1}\le\frac{1}{4}\left(\frac{ac}{a+b}+\frac{ac}{b+c}\right)\end{cases}}\)
Cộng theo vế: \(P\le\frac{1}{4}\left(\frac{ab}{a+c}+\frac{ab}{b+c}+\frac{bc}{a+b}+\frac{bc}{a+c}+\frac{ac}{a+b}+\frac{ac}{b+c}\right)\)
\(P\le\frac{1}{4}\left(\frac{ab+bc}{a+c}+\frac{ab+ac}{b+c}+\frac{ac+bc}{a+b}\right)\)
\(P\le\frac{1}{4}\left(a+b+c\right)=\frac{1}{4}\)
Dấu "=" xảy ra khi: \(a=b=c=\frac{1}{3}\)
\(VT=\sum\frac{c\left(a+b+c\right)+ab}{a+b}=\sum\frac{\left(a+c\right)\left(b+c\right)}{a+b}\)
Đặt \(\left(a+b;b+c;c+a\right)=\left(x;y;z\right)\Rightarrow x+y+z=2\)
\(VT=\frac{xy}{z}+\frac{yz}{x}+\frac{zx}{y}=\frac{1}{2}\left[\left(\frac{xy}{z}+\frac{yz}{x}\right)+\left(\frac{xy}{z}+\frac{zx}{y}\right)+\left(\frac{yz}{x}+\frac{zx}{y}\right)\right]\)
\(VT\ge\frac{1}{2}\left(2\sqrt{\frac{xy^2z}{xz}}+2\sqrt{\frac{x^2yz}{yz}}+2\sqrt{\frac{xyz^2}{xy}}\right)=x+y+z=2\)
Dấu "=" xảy ra khi \(a=b=c=\frac{1}{3}\)
Áp dụng t/c dãy tỉ số bằng nhau, ta được:
\(\frac{a}{b+c}=\frac{b}{c+a}=\frac{c}{a+b}=\frac{a+b+c}{2\left(a+b+c\right)}=\frac{1}{2}\)
\(\Rightarrow\frac{b+c}{a}=\frac{c+a}{b}=\frac{a+b}{c}=2\)
\(\Rightarrow P=2.2.2=8\)
Xét \(a+b+c=0\)
\(\Rightarrow P=\frac{a+b}{c}.\frac{b+c}{a}.\frac{c+a}{b}=\frac{\left(-a\right)\left(-b\right)\left(-c\right)}{abc}=-1\)
Xét \(a+b+c\ne0\)thì ta có:
\(\frac{a}{b+c}=\frac{b}{c+a}=\frac{c}{a+b}=\frac{a+b+c}{2\left(a+b+c\right)}=\frac{1}{2}\)
\(\Rightarrow a+b=2c;b+c=2a;c+a=2b\)
\(\Rightarrow P=\frac{a+b}{c}.\frac{b+c}{a}.\frac{c+a}{b}=\frac{\left(2a\right)\left(2b\right)\left(2c\right)}{abc}=8\)
Đây này bạn:
Câu hỏi của tran thi mai anh - Toán lớp 9 | Học trực tuyến
\(VT=\frac{c+ab}{a+b}+\frac{a+bc}{b+c}+\frac{b+ac}{a+c}\)
\(=\frac{c\left(a+b+c\right)+ab}{a+b}+\frac{a\left(a+b+c\right)+bc}{b+c}+\frac{b\left(a+b+c\right)+ac}{a+c}\)
\(=\frac{\left(c+a\right)\left(b+c\right)}{a+b}+\frac{\left(a+b\right)\left(a+c\right)}{b+c}+\frac{\left(a+b\right)\left(b+c\right)}{a+c}\)
Áp dụng BĐT AM-GM ta có:
\(\frac{\left(c+a\right)\left(b+c\right)}{a+b}+\frac{\left(a+b\right)\left(a+c\right)}{b+c}\ge2\left(a+c\right)\)
Tương tự cho 2 BĐT còn lại rồi cộng theo vế
\(2VT\ge4\left(a+b+c\right)=4=2VP\Rightarrow VT\ge VP\)
Xảy ra khi \(a=b=c=\frac{1}{3}\)
(Đề lừa người quá!)
\(c+ab=\left(a+b+c\right)c+ab=ab+bc+ca+c^2=\left(b+c\right)\left(c+a\right)\).
Biến đổi tương tự các tử số ta được BĐT: \(\frac{\left(b+c\right)\left(c+a\right)}{a+b}+\frac{\left(c+a\right)\left(a+b\right)}{b+c}+\frac{\left(a+b\right)\left(b+c\right)}{c+a}\ge2\).
Đặt \(x=a+b,y=b+c,z=c+a\). Ta có \(x+y+z=2\)
Ta cần CM: \(\frac{xy}{z}+\frac{yz}{x}+\frac{zx}{y}\ge2\Leftrightarrow x^2y^2+y^2z^2+z^2x^2\ge2xyz\)
Áp dụng BĐT \(a^2+b^2+c^2\ge ab+bc+ca\) ta có \(x^2y^2+y^2z^2+z^2x^2\ge xyz\left(x+y+z\right)=2xyz\)
Bài toán được chứng minh.
Bạn Trần Quốc Đạt Giỏi hơn anh luôn ấy nha
nói thiệt chớ anh nhìn vào cũng loạn mắt lam ko nổi đấy nha
anh k cho Đạt 3 k
\(Q=\frac{c+ab}{a+b}+...+\frac{b+ac}{a+c};\frac{c+ab}{a+b}=\frac{ca+cb+c^2+ab}{a+b}=\frac{\left(c+b\right)\left(c+a\right)}{a+b}\)
\(\text{tương tự ta có:}2Q=\frac{2\left(a+b\right)\left(b+c\right)}{a+c}+\frac{2\left(b+c\right)\left(a+c\right)}{a+b}+\frac{2\left(a+b\right)\left(a+c\right)}{b+c}\)
\(\ge2\left(\sqrt{\frac{\left(a+b\right)^2\left(b+c\right)\left(c+a\right)}{\left(b+c\right)\left(c+a\right)}}+\sqrt{\frac{\left(b+c\right)^2\left(a+c\right)\left(a+b\right)}{\left(a+c\right)\left(a+b\right)}}+\sqrt{\frac{\left(c+a\right)^2\left(a+b\right)\left(b+c\right)}{\left(a+b\right)\left(b+c\right)}}\right)\)
\(=2\left[2\left(a+b+c\right)\right]=4\Rightarrowđpcm\text{ dấu "=":}a=b=c=\frac{1}{3}\)