Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng BĐT \(\frac{1}{a+b}\le\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}\right)\)
Ta có : \(\frac{ab}{c+1}=\frac{ab}{a+c+b+c}\le\frac{ab}{4}\left(\frac{1}{a+c}+\frac{1}{b+c}\right)=\frac{ab}{4\left(a+c\right)}\)
\(+\frac{ab}{4\left(b+c\right)}\)
Thiết lập tương tự và thu lại ta có :
\(P\)\(\le\left[\frac{ab}{4\left(a+c\right)}+\frac{ab}{4\left(b+c\right)}+\frac{bc}{4\left(a+b\right)}+\frac{bc}{4\left(a+c\right)}+\frac{ac}{4\left(a+b\right)}+\frac{ac}{4\left(b+c\right)}\right]\)
\(\Leftrightarrow P\le\frac{ab+bc}{4\left(a+c\right)}+\frac{bc+ac}{4\left(a+b\right)}+\frac{ab+ac}{4\left(b+c\right)}\)
\(\Leftrightarrow P\le\frac{b\left(a+c\right)}{4\left(a+c\right)}+\frac{c\left(a+b\right)}{4\left(a+b\right)}+\frac{a\left(b+c\right)}{4\left(b+c\right)}=\frac{a+b+c}{4}=\frac{1}{4}\)
Vậy \(P_{max}=\frac{1}{4}\)
Dấu " = " xảy ra khi \(a=b=c=\frac{1}{3}\)
Áp dụng BĐT : \(\frac{1}{a+b}\le\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}\right)\)
Ta có :
\(\frac{ab}{c+1}=\frac{ab}{a+c+b+c}\le\frac{ab}{4}\left(\frac{1}{a+c}+\frac{1}{b+c}\right)=\frac{ab}{4\left(a+c\right)}+\frac{ab}{4\left(b+c\right)}\)
Thiết lập tương tự và thu gọn lại ta có :
\(P\le\left[\frac{ab}{4\left(a+c\right)}+\frac{ab}{4\left(b+c\right)}+\frac{bc}{4\left(a+b\right)}+\frac{bc}{4\left(a+c\right)}+\frac{ac}{4\left(a+b\right)}+\frac{ac}{4\left(b+c\right)}\right]\)
\(\Leftrightarrow P\le\frac{ab+bc}{4\left(a+c\right)}+\frac{bc+ac}{4\left(a+b\right)}+\frac{ab+ac}{4\left(b+c\right)}\)
\(\Leftrightarrow P\le\frac{b\left(a+c\right)}{4\left(a+c\right)}+\frac{c\left(a+b\right)}{4\left(a+b\right)}+\frac{a\left(b+c\right)}{4\left(b+c\right)}=\frac{1}{4}\)
Vậy \(P_{max}=\frac{1}{4}\)
Dấu "=" xảy ra khi \(a=b=c=\frac{1}{3}\)
Chúc bạn học tốt !!!
Áp dụng bất đẳng thức \(\frac{1}{a+b}\le\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}\right)\)
Ta có : \(\frac{ab}{c+1}=\frac{ab}{a+c+b+c}\le\frac{ab}{4}\left(\frac{1}{a+c}+\frac{1}{b+c}\right)=\frac{ab}{4\left(a+c\right)}+\frac{ab}{4\left(b+c\right)}\)
Thiết lập tương tự và thu lại ta có
\(P\le\) \(\left[\frac{ab}{4\left(a+c\right)}+\frac{ab}{4\left(b+c\right)}+\frac{bc}{4\left(a+b\right)}+\frac{bc}{4\left(a+c\right)}+\frac{ac}{4\left(a+b\right)}+\frac{ac}{4\left(b+c\right)}\right]\)
\(\Leftrightarrow P\le\frac{ab+bc}{4\left(a+c\right)}+\frac{bc+ac}{4\left(a+b\right)}+\frac{ab+ac}{4\left(b+c\right)}\)
\(\Leftrightarrow P\le\frac{b\left(a+c\right)}{4\left(a+c\right)}+\frac{c\left(a+b\right)}{4\left(a+b\right)}+\frac{a\left(b+c\right)}{4\left(b+c\right)}=\frac{a+b+c}{4}=\frac{1}{4}\)
Vậy \(P_{max}=\frac{1}{4}\)
Dấu " = " xảy ra khi \(a=b=c=\frac{1}{3}\)
Chúc bạn học tốt !!!
Áp dụng bđt \(\dfrac{1}{a+b}\le\dfrac{1}{4}\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\)
Ta có \(\dfrac{ab}{c+1}=\dfrac{ab}{a+c+b+c}\le\dfrac{ab}{4}\left(\dfrac{1}{a+c}+\dfrac{1}{b+c}\right)=\dfrac{ab}{4\left(a+c\right)}+\dfrac{ab}{4\left(b+c\right)}\)
Thiết lập tương tự và thu lại ta có
\(P\le\left[\dfrac{ab}{4\left(a+c\right)}+\dfrac{ab}{4\left(b+c\right)}+\dfrac{bc}{4\left(a+b\right)}+\dfrac{bc}{4\left(a+c\right)}+\dfrac{ac}{4\left(a+b\right)}+\dfrac{ac}{4\left(b+c\right)}\right]\)
\(\Leftrightarrow P\le\dfrac{ab+bc}{4\left(a+c\right)}+\dfrac{bc+ac}{4\left(a+b\right)}+\dfrac{ab+ac}{4\left(b+c\right)}\)
\(\Leftrightarrow P\le\dfrac{b\left(a+c\right)}{4\left(a+c\right)}+\dfrac{c\left(a+b\right)}{4\left(a+b\right)}+\dfrac{a\left(b+c\right)}{4\left(b+c\right)}=\dfrac{a+b+c}{4}=\dfrac{1}{4}\)
Vậy \(P_{max}=\dfrac{1}{4}\)
Dấu '' = '' xảy ra khi \(a=b=c=\dfrac{1}{3}\)
\(K=\frac{a^2}{c\left(a^2+c^2\right)}+\frac{b^2}{a\left(a^2+b^2\right)}+\frac{c^2}{b\left(b^2+c^2\right)}\left(a,b,c>0\right)\).
Ta có:
\(\frac{a^2}{c\left(a^2+c^2\right)}=\frac{\left(a^2+c^2\right)-c^2}{c\left(a^2+c^2\right)}=\frac{a^2+c^2}{c\left(a^2+c^2\right)}-\frac{c^2}{c\left(a^2+c^2\right)}\)\(=\frac{1}{c}-\frac{c^2}{c\left(a^2+c^2\right)}\).
Vì \(a,c>0\)nên áp dụng bất đẳng thức Cô-si cho 2 số dương, ta được:
\(a^2+c^2\ge2ac\).
\(\Leftrightarrow c\left(a^2+c^2\right)\ge2ac^2\).
\(\Rightarrow\frac{1}{c\left(a^2+c^2\right)}\le\frac{1}{2ac^2}\)
\(\Leftrightarrow\frac{c^2}{c\left(a^2+c^2\right)}\le\frac{c^2}{2ac^2}=\frac{1}{2a}\).
\(\Leftrightarrow-\frac{c^2}{c\left(a^2+c^2\right)}\ge-\frac{1}{2a}\).
\(\Leftrightarrow\frac{1}{c}-\frac{c^2}{c\left(a^2+c^2\right)}\ge\frac{1}{c}-\frac{1}{2a}\)
\(\Leftrightarrow\frac{a^2}{c\left(a^2+c^2\right)}\ge\frac{1}{c}-\frac{1}{2a}\left(1\right)\)
Dấu bằng xảy ra \(\Leftrightarrow a=c>0\) .
Chứng minh tương tự, ta được:
\(\frac{b^2}{a\left(a^2+b^2\right)}\ge\frac{1}{a}-\frac{1}{2b}\left(a,b>0\right)\left(2\right)\)
Dấu bằng xảy ra \(\Leftrightarrow a=b>0\)
Chứng minh tương tự, ta dược:
\(\frac{c^2}{b\left(b^2+c^2\right)}\ge\frac{1}{b}-\frac{1}{2c}\left(b,c>0\right)\left(3\right)\).
Dấu bằng xảy ra \(\Leftrightarrow b=c>0\).
Từ \(\left(1\right),\left(2\right),\left(3\right)\), ta được:
\(\frac{a^2}{c\left(a^2+c^2\right)}+\frac{b^2}{a\left(a^2+b^2\right)}+\frac{c^2}{b\left(b^2+c^2\right)}\ge\)\(\frac{1}{c}-\frac{1}{2a}+\frac{1}{a}-\frac{1}{2b}+\frac{1}{b}-\frac{1}{2c}\).
\(\Leftrightarrow K\ge\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)-\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\).
\(\Leftrightarrow K\ge\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\).
\(\Leftrightarrow K\ge\frac{1}{2}\left(\frac{ab+bc+ca}{abc}\right)\).
Mà \(ab+bc+ca=3abc\)(theo đề bài).
Do đó \(K\ge\frac{1}{2}.\frac{3abc}{abc}\).
\(\Leftrightarrow K\ge\frac{3abc}{2abc}\).
\(\Leftrightarrow K\ge\frac{3}{2}\).
Dấu bằng xảy ra.
\(\Leftrightarrow\hept{\begin{cases}a=b=c>0\\ab+bc+ca=3abc\end{cases}}\Leftrightarrow a=b=c=1\).
Vậy \(minK=\frac{3}{2}\Leftrightarrow a=b=c=1\).
a) DK : x > 0; x khác 1
\(P=\sqrt{x}\left(\sqrt{x}-1\right)-\left(2\sqrt{x}+1\right)+2\left(\sqrt{x}+1\right)\)
\(=x-\sqrt{x}+1\)
c ) \(Q=\frac{2\sqrt{x}}{P}=\frac{2\sqrt{x}}{x-\sqrt{x}+1}\)
<=> \(xQ-\left(Q+2\right)\sqrt{x}+Q=0\)(1)
TH1: Q = 0 => x = 0 loại
TH2: Q khác 0
(1) là phương trình bậc 2 với tham số Q ẩn x.
(1) có nghiệm <=> \(\left(Q+2\right)^2-4Q^2\ge0\)
<=> \(-3Q^2+4Q+4\ge0\)
<=> \(-\frac{2}{3}\le Q\le2\)
Vì Q nguyên và khác 0 nên Q = 1 hoặc Q = 2
Với Q = 1 => \(x-3\sqrt{x}+1=0\)
<=> \(\sqrt{x}=\frac{3}{2}\pm\frac{\sqrt{5}}{2}\)----> Tìm được x
Với Q = 2 => \(2x-4\sqrt{x}+1=0\Leftrightarrow\sqrt{x}=1\pm\frac{1}{\sqrt{2}}\)-----> tìm đc x.
Tự làm tiếp nhé! Kiểm tra lại đề bài câu b.
Áp dụng bđt Cauchy-Schwarz: \(\frac{ab}{c+1}=\frac{ab}{c+a+b+c}=\frac{ab}{\left(a+c\right)+\left(b+c\right)}\le\frac{1}{4}\left(\frac{ab}{a+c}+\frac{ab}{b+c}\right)\)
Chứng minh tương tự: \(\hept{\begin{cases}\frac{bc}{a+1}\le\frac{1}{4}\left(\frac{bc}{a+c}+\frac{bc}{a+b}\right)\\\frac{ac}{b+1}\le\frac{1}{4}\left(\frac{ac}{a+b}+\frac{ac}{b+c}\right)\end{cases}}\)
Cộng theo vế: \(P\le\frac{1}{4}\left(\frac{ab}{a+c}+\frac{ab}{b+c}+\frac{bc}{a+b}+\frac{bc}{a+c}+\frac{ac}{a+b}+\frac{ac}{b+c}\right)\)
\(P\le\frac{1}{4}\left(\frac{ab+bc}{a+c}+\frac{ab+ac}{b+c}+\frac{ac+bc}{a+b}\right)\)
\(P\le\frac{1}{4}\left(a+b+c\right)=\frac{1}{4}\)
Dấu "=" xảy ra khi: \(a=b=c=\frac{1}{3}\)