Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔAHB và ΔAHC có
AH chung
HB=HC
AB=AC
Do đó: ΔAHB=ΔAHC
Ta có: ΔABC cân tại A
mà AH là đường trung tuyến
nên AH là tia phân giác
b: Xét ΔAIH và ΔAKH có
AI=AK
\(\widehat{IAH}=\widehat{KAH}\)
AH chung
Do đó; ΔAIH=ΔAKH
Suy ra: \(\widehat{AIH}=\widehat{AKH}=90^0\)
hay HK\(\perp\)AC
a: Xét ΔABH và ΔACH có
AB=AC
AH chung
BH=CH
Do đó: ΔABH=ΔACH
a: ΔAHB vuông tại H
=>AH<AB
b: Xét ΔKAD vuông tại K và ΔHBA vuông tại H có
AD=BA
góc KAD=góc HBA
=>ΔKAD=ΔHBA
=>KD=HB và AK=BH
a) Xét ΔAMB và ΔAMC có
AB=AC(gt)
AM chung
BM=CM(M là trung điểm của BC)
Do đó: ΔAMB=ΔAMC(c-c-c)
b) Ta có: AB=AC(gt)
nên A nằm trên đường trung trực của BC(Tính chất đường trung trực của một đoạn thẳng)(1)
Ta có: MB=MC(M là trung điểm của BC)
nên M nằm trên đường trung trực của BC(Tính chất đường trung trực của một đoạn thẳng)(2)
Từ (1) và (2) suy ra AM là đường trung trực của BC
hay AM⊥BC(đpcm)
c) Ta có: ΔABM=ΔACM(cmt)
nên \(\widehat{BAM}=\widehat{CAM}\)(hai góc tương ứng)
hay \(\widehat{HAM}=\widehat{KAM}\)
Xét ΔAHM và ΔAKM có
AH=AK(gt)
\(\widehat{HAM}=\widehat{KAM}\)(cmt)
AM chung
Do đó: ΔAHM=ΔAKM(c-g-c)
⇒\(\widehat{HMA}=\widehat{KMA}\)(hai góc tương ứng)
mà tia MA nằm giữa hai tia MH và MK
nên MA là tia phân giác của \(\widehat{HAK}\)(đpcm)
d) Xét ΔABC có AB=AC(gt)
nên ΔABC cân tại A(Định nghĩa tam giác cân)
⇒\(\widehat{B}=\widehat{C}\)
Ta có: AH+HB=AB(H nằm giữa A và B)
AK+KC=AC(K nằm giữa A và C)
mà AB=AC(gt)
và AH=AK(gt)
nên HB=KC
Xét ΔHBM và ΔKCM có
HB=KC(cmt)
\(\widehat{B}=\widehat{C}\)(cmt)
BM=MC(M là trung điểm của BC)
Do đó: ΔHBM=ΔKCM(c-g-c)
a) Xét ∆ABE và ∆DCE có:
+ ^AEB = ^DEC (2 góc đối đỉnh).
+ EB = EC (do E là trung điểm của BC).
+ EA = ED (do E là trung điểm của AD).
=> ∆ABE = ∆DCE (c - g - c).
b) Xét tứ giác ACDB có:
+ E là trung điểm của BC (gt).
+ E là trung điểm của AD (gt).
=> Tứ giác ACDB là hình bình hành (dhnb).
=> AC // BD (Tính chất hình bình hành).
c) Vì tứ giác ACDB là hình bình hành (cmt).
=> AC = BD (Tính chất hình bình hành). (1)
Xét tam giác ACK có:
+ CH là đường cao (do CH ⏊ AK).
+ CH là đường trung tuyến (do H là trung điểm của AK).
=> Tam giác ACK cân tại C.
=> AC = CK (Tính chất tam giác cân). (2)
Từ (1) và (2) => BD = AC = CK (đpcm).
d) Xét tam giác AKD có:
+ H là trung điểm của AK (gt).
+ E là trung điểm của AD (gt)
=> HE là đường trung bình.
=> HE // DK (Tính chất đường trung bình trong tam giác).
Mà HE ⏊ AH (do BC ⏊ AH).
=> DK ⏊ AH (Từ ⏊ đến //).