K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 4 2021

Vì thấy chủ để là tam giác đồng dạng nên mình sửa lại đề nhé: ∆A'B'C'~∆ABC

Giải:

Vì theo đề bài: ∆A'B'C~∆ABC

\(\Rightarrow\dfrac{A'B'}{AB}=\dfrac{B'C'}{BC}=\dfrac{C'A'}{CA}\)

\(\Leftrightarrow\dfrac{A'B'}{6}+\dfrac{B'C'}{12}+\dfrac{A'C'}{9}=\dfrac{A'B'+B'C'+C'A'}{6+12+9}\)

Mà chu vi ∆A'B'C =18 cm

=> A'B'+B'C'+C'A'=18

=> \(\dfrac{A'B'}{6}+\dfrac{B'C'}{12}=\dfrac{A'C'}{9}=\dfrac{A'B'+B'C'+C'A'}{6+9+12}=\dfrac{18}{27}=\dfrac{2}{3}\)

=> \(\dfrac{A'B'}{6}=\dfrac{2}{3}\Rightarrow A'B'=\dfrac{2.6}{3}=4\left(cm\right)\)

\(\dfrac{B'C'}{12}=\dfrac{2}{3}\Rightarrow B'C'=\dfrac{2.12}{3}=8\left(cm\right)\)

\(\dfrac{A'C'}{9}=\dfrac{2}{3}\Rightarrow A'C'=\dfrac{2.9}{3}=6\left(cm\right)\)

Vậy A'C'=4cm, A'C'=6cm, B'C'=8cm

 

2 tháng 4 2021

Có phải là ∆ABC~∆A'B'C' không bạn?

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{A'B'}{3}=\dfrac{B'C'}{14}=\dfrac{C'A'}{13}=\dfrac{A'B'+B'C'+C'A'}{3+14+13}=\dfrac{90}{30}=3\)

Do đó: A'B'=9cm; B'C'=42cm; C'A'=39cm

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{A'B'}{3}=\dfrac{B'C'}{14}=\dfrac{C'A'}{13}=\dfrac{A'B'+B'C'+C'A'}{3+14+13}=\dfrac{90}{30}=3\)

Do đó: A'B'=9cm; B'C'=42cm; C'A'=39cm

a: Xét ΔA'B'C' và ΔABC có 

A'B'/AB=A'C'/AC=B'C'/BC

Do đó: ΔA'B'C'\(\sim\)ΔABC

b: \(\dfrac{C_{A'B'C'}}{C_{ABC}}=\dfrac{A'B'}{AB}=2\)

AH
Akai Haruma
Giáo viên
17 tháng 3 2021

Lời giải:

a) Ta thấy:

$\frac{4}{8}=\frac{5}{10}=\frac{6}{12}$ nên 2 tam giác đồng dạng theo TH c.c.c

b) Pitago: $A'C'=\sqrt{B'C'^2-A'B'^2}=\sqrt{16^2-9^2}=5\sqrt{7}$

Xét tam giác $ABC$ và $A'B'C'$ có:

$\widehat{A}=\widehat{A'}=90^0$

$\frac{AB}{AC}\neq \frac{A'B'}{A'C'}$

Do đó 2 tam giác không đồng dạng

21 tháng 12 2021

A

21 tháng 12 2021

Chọn A

3 tháng 6 2021

Vì △ABC∼△A'B'C'

mà A'B' = AB - 12 = 24 - 12 = 12m

=> Ta có tỉ số đồng dạng: AB/A'B' = AC/A'C' = BC/B'C'

=> 24/12 = 42/A'C' = 48/B'C'

=> A'C' = 21m; B'C' = 24m

3 tháng 6 2021

Thank