Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Phải là 1+c/a chứ bạn ơi
A = a+b/b . b+c/c . c+a/a = (-c/b).(-a/c).(-b/a) = -1
k mk nha
Ta có \(a+b+c=0\)
\(\Leftrightarrow\hept{\begin{cases}b+c=-a\left(1\right)\\c+a=-b\left(2\right)\\a+b=-c\left(3\right)\end{cases}}\)
Mặt khác\(A=\frac{a+b}{b}\cdot\frac{b+c}{c}\cdot\frac{c+a}{a}\left(4\right)\)
Từ\(\left(1\right),\left(2\right),\left(3\right),\left(4\right)\)ta có :
\(A=-\frac{c}{b}\cdot-\frac{a}{b}\cdot-\frac{b}{a}\)
\(=-\frac{a\cdot b\cdot c}{a\cdot b\cdot c}=-1\)
Vậy\(A=-1\)
Em có cách khác!
\(\frac{1}{a+b+c}+\frac{1}{b+c+d}+\frac{1}{c+d+a}+\frac{1}{d+a+b}=\frac{1}{40}\)
\(\Rightarrow\frac{a+b+c+d}{a+b+c}+\frac{a+b+c+d}{b+c+d}+\frac{a+b+c+d}{c+d+a}\)
\(+\frac{a+b+c+d}{d+a+b}=50\)
\(\Rightarrow\frac{d}{a+b+c}+1+\frac{a}{b+c+d}+1+\frac{b}{c+d+a}+1\)
\(+\frac{c}{d+a+b}+1=50\)
\(\Rightarrow\frac{d}{a+b+c}+\frac{a}{b+c+d}+\frac{b}{c+d+a}+\frac{c}{d+a+b}=46\)
Đề: \(a+b+c+d=2000\)
\(\frac{1}{a+b+c}+\frac{1}{b+c+d}+\frac{1}{c+d+a}+\frac{1}{d+a+b}=\frac{1}{40}\)
Tính:
\(S=\frac{a}{b+c+d}+\frac{b}{c+d+a}+\frac{c}{d+a+b}+\frac{d}{a+b+c}\)
Giải:
Có: \(\frac{1}{a+b+c}+\frac{1}{b+c+d}+\frac{1}{c+d+a}+\frac{1}{d+a+b}=\frac{1}{40}\)
=> \(\frac{1}{2000-d}+\frac{1}{2000-a}+\frac{1}{2000-b}+\frac{1}{2000-c}=\frac{1}{40}\)
<=> \(\frac{2000}{2000-d}+\frac{2000}{2000-a}+\frac{2000}{2000-b}+\frac{2000}{2000-c}=\frac{2000}{40}\)
<=> \(1+\frac{d}{2000-d}+1+\frac{a}{2000-a}+1+\frac{b}{2000-b}+1+\frac{c}{2000-c}=50\)
<=> \(\frac{d}{a+b+c}+\frac{a}{b+c+d}+\frac{b}{a+c+d}+\frac{c}{a+b+d}=46\)
=> \(S=46\)
Ta có S = \(\frac{a}{b+c+d}+\frac{b}{c+d+a}+\frac{c}{d+a+b}+\frac{d}{a+b+c}\)
=> S + 4 = \(\left(\frac{a}{b+c+d}+1\right)+\left(\frac{b}{c+d+a}+1\right)+\left(\frac{c}{d+a+b}+1\right)+\left(\frac{d}{a+b+c}+1\right)\)
= \(\frac{a+b+c+d}{b+c+d}+\frac{a+b+c+d}{c+d+a}+\frac{a+b+c+d}{d+a+b}+\frac{a+b+c+d}{a+b+c}\)
\(=\left(a+b+c+d\right)\left(\frac{1}{b+c+d}+\frac{1}{c+d+a}+\frac{1}{d+a+b}+\frac{1}{a+b+c}\right)\)
\(=4000.\frac{1}{40}=100\)
=> S = 100 - 4 = 96
\(\frac{a+b-c}{c}=\frac{b+c-a}{a}\)\(=\frac{c+a-b}{b}\)
=> \(\frac{a+b}{c}-1=\frac{b+c}{a}-1\)\(=\frac{c+a}{b}-1\)
=>\(\frac{a+b}{c}=\frac{b+c}{a}=\frac{c+a}{b}\)
Xét 2 trường hợp
+) Nếu a+b+c \(\ne\)0
Áp dụng tính chất dãy tỉ số bằng nhau, ta có
\(\frac{a+b}{c}=\frac{b+c}{a}=\frac{c+a}{b}\)\(=\frac{2\left(a+b+c\right)}{a+b+c}=2\)(vì a+b+c \(\ne\)0)
=> \(\hept{\begin{cases}a+b=2c\\b+c=2a\\c +a=2b\end{cases}}=>a=b=c\)\(\hept{\begin{cases}a+b=2c\\b+c=2a\\c+a=2b\end{cases}}\)=> \(a=b=c\)
Thay vào B => B=\(\left(1+\frac{a}{a}\right)\left(1+\frac{a}{a}\right)\left(1+\frac{a}{a}\right)\)=2.2.2= 8
+) Nếu a+b+c=0 => \(\hept{\begin{cases}a=-\left(b+c\right)\\b=-\left(a+c\right)\\c=-\left(a+b\right)\end{cases}}\)Thay vào B
B=\(\left(1+\frac{-\left(a+c\right)}{a}\right)\)\(\left(1+\frac{-\left(b+c\right)}{c}\right)\)\(\left(1+\frac{-\left(a+b\right)}{b}\right)\)
=>B= \(\frac{-c}{a}.\frac{-b}{c}.\frac{-a}{b}=-1\)( Vì a,b,c \(\ne\)0 nên abc\(\ne\)0)
Vậy B= 8 nếu a+b+c khác 0 ; B=-1 nếu a+b+c =0
Xin lỗi bạn mk thiếu ở trường hợp 1
=>\(\hept{\begin{cases}a+b=2c\\c+b=2a\\a+c=2b\end{cases}}\)=>\(a=b=c\)