Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(a+b)(b+c)(c+a) +abc= (a+b).(b.c + b.a + c.c + c.a) +abc
= (a+b).(a.b + b.c + c.a) + (a+b).(c.c) +abc
= (a+b+c).(a.b + b.c + c.a) - c.(a.b + b.c + c.a) + (a+b).(c.c) +abc
= (a+b+c).(a.b + b.c + c.a) - a.b.c - b.c.c - c.c.a + a.c.c + b.c.c +abc
= (a+b+c).(a.b + b.c + c.a) - a.b.c+abc
=(a+b+c)0+0=0
ta có (a+b)(b+c)(c+a)+abc
=(a+b)(bc+ab+c^2+ca)+abc
=(a+b)(bc+ab+ca+c^2)+abc
=(a+b).c^2+abc
=ac^2+bc^2+abc
=c(ac+bc+ab)=c.0=0 (đpcm)
Đề : ab + 4bc + ca \(\le\)0
Có : a + b + c = 0 => a = - b - c
Thay vào ab + 4bc + ca \(\le\)0 ta đc:
(-b - c).b + 4bc + c.(-b - c) \(\le\) 0
=> -b2 - bc + 4bc - bc - c2 \(\le\)0
=> -b2 - c2 + 2bc \(\le\)0
=> - (b2 - 2bc + c2) \(\le\) 0
=> -(b - c)2 \(\le\) 0 (luôn đúng)
Vậy ab + 4bc + ca \(\le\) 0