K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 12 2018

\(M=\left(a+b\right)\left(a^2-ab+b^2\right)+3ab\left(a^2+b^2+2ab-2ab\right)+6a^2b^2\left(a+b\right)\)

\(M=a^2+2ab+b^2-3ab+3ab-6a^2b^2+6a^2b^2\)

\(M=\left(a+b\right)^2=1\)

1 tháng 4 2019

ngu lắm sơn à

Câu hỏi tương tự có nha

12 tháng 3 2020

oki bạn

29 tháng 1 2020

\(1,M=a^3+b^3+3ab\left(a^2+b^2\right)+6a^2b^2\left(a+b\right)\)

\(=\left(a+b\right)\left(a^2-ab+b^2\right)+3ab\left[\left(a+b\right)^2-2ab\right]+6a^2b^2\left(a+b\right)\)

\(=\left(a+b\right)\left[\left(a+b\right)^2-3ab\right]+3ab\left[\left(a+b\right)^2-2ab\right]+6a^2b^2\left(a+b\right)\)

Thay \(a+b=1\) vào ta được:

\(1\left(1-3ab\right)+3ab\left(1-2ab\right)+6a^2b^2\)

\(=1-3ab+3ab-6a^2b^2+6a^2b^2\)

\(=1\)

Vậy ......................

9 tháng 8 2017

\(M=a^3+b^3+3ab\left(a^2+b^2\right)+6a^2b^2\left(a+b\right)\)

\(=\left(a+b\right)^3-3ab\left(a+b\right)+3ab\left(a^2+b^2+2ab\right)\)

\(=1-3ab+3ab\left(a+b\right)^2\)

= 1

9 tháng 8 2017

\(M=a^3+b^2+3ab\left(a^2+b^2\right)+6a^2b^2\left(a+b\right)\)

\(M=\left(a+b\right)^3-3ab\left(a+b\right)+3ab\left(\left(a+b\right)^2-2ab\right)+6a^2b^2\left(a+b\right)\)

\(M=1^3-3ab.1+3ab\left(1^2-2ab\right)+6a^2b^2.1\)

\(M=1-3ab+3ab-6a^2b^2+6a^2b^2=1\)

vậy \(M=1\) khi \(a+b=1\)

24 tháng 11 2018

       \(3x^2+3y^2+4xy+2x-2y+2=0\)

\(\Rightarrow\left(2x^2+4xy+2y^2\right)+\left(x^2+2x+1\right)+\left(y^2-2y+1\right)=0\)

\(\Rightarrow2\left(x+y\right)^2+\left(x+1\right)^2+\left(y-1\right)^2=0\)

\(\Rightarrow\hept{\begin{cases}x+y=0\\x+1=0\\y-1=0\end{cases}\Rightarrow\hept{\begin{cases}x=-1\\y=1\end{cases}}}\)

Khi đó: \(A=\left(-1+1\right)^{2014}+\left(-1+2\right)^{2015}+\left(1-1\right)^{2016}\)

\(=0+1+0=1\)

22 tháng 12 2018

M = a3 + b3 + 3ab(a2 + b2) + 6a2b2(a + b)

= (a + b)(a2 - ab + b2) + 3ab((a + b)2 - 2ab) + 6a2b2(a + b)

= (a + b)((a + b)2 - 3ab) + 3ab((a + b)2 - 2ab) + 6a2b2(a + b)

= 1 - 3ab + 3ab(1 - 2ab) + 6a2b2

= 1 - 3ab + 3ab - 6a2b2 + 6a2b2 = 1

\(M=a^3+b^3+3ab\left(a^2+b^2\right)+6a^2b^2\left(a+b\right)\)

\(=\left(a+b\right)^3-3ab\left(a+b\right)+3ab\left(a^2+b^2\right)+6a^2b^2\)

\(=1-3ab+3ab\cdot\left[\left(a+b\right)^2-2ab\right]+6a^2b^2\)

\(=1-3ab-6a^2b^2+6a^2b^2=1-3ab\)

3 tháng 1 2022

\(M=a^3+b^3+3ab\left(a^2+b^2\right)+6a^2b^2\left(a+b\right)\\ M=\left(a+b\right)^3-3ab\left(a+b\right)+3ab\left(a^2+b^2\right)+6a^2b^2\\ M=1-3ab+3ab\left(a^2+b^2+2ab\right)=1-3ab+3ab\left(a+b\right)^2\\ M=1-3ab+3ab=1\)

22 tháng 12 2018

M = a3 + b3 + 3ab(a2 + b2) + 6a2b2(a + b)

= (a + b)(a2 - ab + b2) + 3ab((a + b)2 - 2ab) + 6a2b2(a + b)

= (a + b)((a + b)2 - 3ab) + 3ab((a + b)2 - 2ab) + 6a2b2(a + b)

= 1 - 3ab + 3ab(1 - 2ab) + 6a2b2

= 1 - 3ab + 3ab - 6a2b2 + 6a2b2 = 1

9 tháng 12 2019

Có: M = a3 + b3 + 3ab(a2 + b2) + 6a2b2(a + b)

=> M = (a + b)(a2 - ab + b2) + 3ab((a + b)2 - 2ab) + 6a2b2(a + b)

=> M = (a + b)[(a + b)2 - 3ab] + 3ab[(a + b)2 - 2ab] + 6a2b2(a + b)

=> M = 1 - 3ab + 3ab(1 - 2ab) + 6a2b2     (vì a+b=1)

=> M = 1 - 3ab + 3ab - 6a2b2 + 6a2b2 

=> M = 1

Vậy M = 1

9 tháng 12 2019

M = \(a^3\)\(b^3\)+ 3ab ( \(a^2\)\(b^2\)) + \(6a^2\)\(b^2\)(a+b)

M = ( a + b ) ( \(a^2\)- ab + \(b^2\))  + 3ab [ \(a^2\)\(b^2\)+ 2ab( a + b )

M = \(a^2\)- ab + \(b^2\)+ 3ab ( \(a^2\)+ 2ab + \(b^2\))

Với a + b = 1

M= \(a^2\)- ab + \(b^2\)+ 3ab\(\left(a+b\right)^2\)

M = \(a^2\)- ab + \(b^2\)+ 3ab

M = \(a^2\)\(b^2\)+ 2ab

M = \(a^2\)+ 2ab + \(b^2\)

M = \(\left(a+b\right)^2\)

M = 1

Vậy M = 1