Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(a^2+b^2+1=2\left(ab+a+b\right)\)
\(\Leftrightarrow\)\(a^2+b^2+1-2ab-2a-2b=0\)
\(\Leftrightarrow\)\(\left(a^2-2ab+b^2\right)-2a+2b+1-4b=0\)
\(\Leftrightarrow\)\(\left(a-b\right)^2-2\left(a-b\right)+1=4b\)
\(\Leftrightarrow\)\(\left(a-b-1\right)^2=4b\) \(\left(1\right)\)
Do đó \(4b\)là một số chính phương, mà 4 là số chính phương suy ra b là số chính phương.
Đặt \(b=x^2,\)thay vào \(\left(1\right)\): \(\left(a-x^2-1\right)^2=4x^2\)
\(\Leftrightarrow\)\(\left(a-x^2-1\right)^2=\left(2x\right)^2\)
* Xét 2 trường hợp:
- Trường hợp 1: \(a-x^2-1=2x\)\(\Leftrightarrow\)\(a=x^2+2x+1=\left(x+1\right)^2\)
Ta có \(b=x^2\)và \(a=\left(x+1\right)^2\)\(\Rightarrow\)\(a\)và \(b\)là 2 số chính phương liên tiếp.
- Trường hợp 2: \(a-x^2-1=-2x\)\(\Leftrightarrow\)\(a=x^2-2x+1=\left(x-1\right)^2\)
Ta có \(b=x^2\)và \(a=\left(x-1\right)^2\)\(\Rightarrow\)\(a\)và \(b\)là 2 số chính phương liên tiếp.
Vậy \(a\)và \(b\)là 2 số chính phương liên tiếp.
a)Có \(a^2+1\ge2a\) với mọi a; \(b^2+1\ge2b\) với mọi b
Cộng vế với vế \(\Rightarrow a^2+b^2+2\ge2\left(a+b\right)\)
Dấu = xảy ra <=> a=b=1
b) Áp dụng BĐT bunhiacopxki có:
\(\left(x+y\right)^2\le\left(1+1\right)\left(x^2+y^2\right)\Leftrightarrow\left(x+y\right)^2\le2\)
\(\Leftrightarrow-\sqrt{2}\le x+y\le\sqrt{2}\)
\(\Rightarrow\left(x+y\right)_{max}=\sqrt{2}\Leftrightarrow\left\{{}\begin{matrix}x+y=\sqrt{2}\\x=y\end{matrix}\right.\)\(\Leftrightarrow x=y=\dfrac{\sqrt{2}}{2}\)
\(\left(x+y\right)_{min}=-\sqrt{2}\Leftrightarrow\left\{{}\begin{matrix}x+y=-\sqrt{2}\\x=y\end{matrix}\right.\)\(\Leftrightarrow x=y=-\dfrac{\sqrt{2}}{2}\)
c) \(S=\dfrac{1}{ab}+\dfrac{1}{a^2+b^2}=\dfrac{1}{a^2+b^2}+\dfrac{1}{2ab}+\dfrac{1}{2ab}\)
Với x,y>0, ta có: \(\dfrac{1}{x}+\dfrac{1}{y}\ge\dfrac{4}{x+y}\) (1)
Thật vậy (1) \(\Leftrightarrow\dfrac{y+x}{xy}\ge\dfrac{4}{x+y}\Leftrightarrow\left(x+y\right)^2\ge4xy\)\(\Leftrightarrow\left(x-y\right)^2\ge0\) (lđ)
Áp dụng (1) vào S ta được:
\(S\ge\dfrac{4}{a^2+b^2+2ab}+\dfrac{1}{2ab}\)
Lại có: \(ab\le\dfrac{\left(a+b\right)^2}{4}\) \(\Leftrightarrow2ab\le\dfrac{\left(a+b\right)^2}{2}\Leftrightarrow2ab\le\dfrac{1}{2}\)\(\Rightarrow\dfrac{1}{2ab}\ge2\)
\(\Rightarrow S\ge\dfrac{4}{\left(a+b\right)^2}+2=6\)
\(\Rightarrow S_{min}=6\Leftrightarrow a=b=\dfrac{1}{2}\)
mong các bạn giải cho mik. mik sẵn sàng tick đúng cho các bạn
\(a^2+b^2+1-2ab-2a+2b=4b\)
\(\left(a-b-1\right)^2=4b=4.k^2=\left(2k\right)^2\) ; với b = k2
=> a -k2 -1 =2k => a =k2 +2k+1 =(k+1)2
hoặc a - k2 -1 = -2 k => a = (k -1)2
=> Vậy .....
Em không chắc đâu ạ.
\(PT\Leftrightarrow a^2+b^2+1-2ab-2a-2b=0\)
\(\Leftrightarrow\left(a-b\right)^2-2\left(a+b\right)+1=0\)
Pt có nghiệm \(\Leftrightarrow\Delta'=\left(a+b\right)^2-\left(a^2-2ab+b^2\right)\ge0\)
\(\Leftrightarrow4ab\ge0\Leftrightarrow ab\ge0\Leftrightarrow\orbr{\begin{cases}a=0\\b=0\end{cases}}\)
Với a = 0 thì \(b^2-2b+1=0\Leftrightarrow\left(b-1\right)^2=0\Leftrightarrow b=1\)
Khi đó a,b là hai số chính phương liên tiếp (1)
Tương tự ta cũng có với b = 0 thì a = 1.
Khi đó a,b là hai số chính phương liên tiếp (2)
Từ (1) và (2) ta có đpcm.