Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
`a<b`
`<=>3a<3b`
`<=>3a-5<3b-5`
b)
`a<b`
`<=>-8a> -8b`
`<=>-8a-3> -8b-3`
c)
`a<b`
`<=>4a<4b`
`<=>4a+9<4b+9`
mà `4a-7<4a+9`
`<=>4a-7<4b+9`
Lời giải:
Gọi số hs lớp 8A là $a$ thì số hs lớp 8B là: $a-2-2=a-4$ (hs)
Theo bài ra ta có:
$a-4-5=(a+5)\frac{2}{3}$
$\Leftrightarrow a-9=\frac{2}{3}(a+5)$
$\Leftrightarrow 3(a-9)=2(a+5)$
$\Leftrightarrow a=37$ (hs)
Vậy số hs lớp 8A là $37$, số hs lớp 8B là $37-4=33$ (hs)
Đặt PT đã cho ở đề là A
Ta có : \(\sqrt{3a^2+8b^2+14ab}=\sqrt{3a\left(a+4b\right)+2b\left(a+4b\right)}=\sqrt{\left(3a+2b\right)\left(a+4b\right)}\)
\(\le\dfrac{3a+2b+a+4b}{2}=\dfrac{4a+6b}{2}=2a+3b\)
\(\Rightarrow\dfrac{a^2}{\sqrt{3a^2+8b^2+14ab}}\ge\dfrac{a^2}{2a+3b}\)
Làm tương tự như trên , ta có :
\(\dfrac{b^2}{\sqrt{3b^2+8c^2+14bc}}\ge\dfrac{b^2}{2b+3c};\dfrac{c^2}{\sqrt{3c^2+8a^2+14ac}}\ge\dfrac{c^2}{2c+3a}\)
Nên : \(A\ge\dfrac{a^2}{2a+3b}+\dfrac{b^2}{2b+3c}+\dfrac{c^2}{2c+3a}\ge\dfrac{\left(a+b+c\right)^2}{5\left(a+b+c\right)}=\dfrac{5}{a+b+c}\left(đpcm\right)\)
Chứng minh BĐT phụ: \(\frac{m^2}{x}+\frac{n^2}{y}\ge\frac{\left(m+n\right)^2}{x+y}\) với \(x;y>0\) (*)
Ta có: \(3a^2+8b^2+14ab\)
\(=\left(3a^2+12ab\right)+\left(2ab+8b^2\right)\)
\(=3a\left(a+4b\right)+2b\left(a+4b\right)\)
\(=\left(3a+2b\right)\left(a+4b\right)\)
\(\Rightarrow\sqrt{3a^2+8b^2+14ab}=\sqrt{\left(3a+2b\right)\left(a+4b\right)}\le\frac{3a+2b+a+4b}{2}=2a+3b\)
\(\Rightarrow\frac{a^2}{\sqrt{3a^2+8b^2+14ab}}\ge\frac{a^2}{2a+3b}\)
Tương tự, ta có: \(\frac{b^2}{\sqrt{3b^2+8c^2+14bc}}\ge\frac{b^2}{2b+3c}\)
\(\frac{c^2}{\sqrt{3c^2+8a^2+14ca}}\ge\frac{c^2}{2c+3a}\)
Áp dụng (*), ta có:
\(VT\ge\frac{a^2}{2a+3b}+\frac{b^2}{2b+3c}+\frac{c^2}{2c+3a}\ge\frac{\left(a+b+c\right)^2}{2a+3b+2b+3c+2c+3a}=\frac{\left(a+b+c\right)^2}{5\left(a+b+c\right)}\)
\(=\frac{1}{5}\left(a+b+c\right)\)
Vậy \(\frac{a^2}{\sqrt{3a^2+8b^2+14ab}}+\frac{b^2}{\sqrt{3b^2+8c^2+14bc}}+\frac{c^2}{\sqrt{3c^2+8a^2+14ca}}\ge\frac{1}{5}\left(a+b+c\right)\)
có thể là bé hơn hoặc bằng,các bạn thử cho mình với nhé
áp dụng Bất Đẳng Thức CBS \(\sqrt{3a^2+8b^2+14ab}=\sqrt{\left(a+4b\right)\left(3a+2b\right)}\le\frac{1}{2}\left(4a+6b\right)\)
(BĐT CBS) do đó ta \(\Rightarrow\frac{a^2}{\sqrt{3a^2+8b^2+14ab}}\ge\frac{a^2}{2a+3b}\)
tương tư với mẫu còn lại
\(\Rightarrow\Sigma\frac{a^2}{\sqrt{3a^2+8b^2+14ab}}\ge\Sigma\frac{a^2}{2a+3b}\ge\frac{\left(a+b+c\right)^2}{5\left(a+b+c\right)}=\frac{a+b+c}{5}\left(Q.E.D\right)\)
đẳng thức xảy ra khi a=b=c
Gọi số học sinh lớp 8A là a
Số học sinh lớp 8B là b (đơn vị học sinh)(a,b \(\in N\)*)
Theo bài ta có hệ phương trình:
\(\left\{{}\begin{matrix}a-2=b+2\\b-5=\dfrac{2}{3}\left(a+5\right)\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a-b=4\\\dfrac{2}{3}a-b=-\dfrac{25}{3}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=37\\b=33\end{matrix}\right.\left(tmđk\right)\)
Vậy số học sinh lớp 8A là 37 học sinh
số học sinh lớp 8B là 33 học sinh
a) Vì a>b
=>3a>3b
=>5-3a<5-3b
c) vì a>b
=>8a>8b
=>8a-3>8b-3
c) vì a>b
=>8a>8b
Vì 3<5
=>8a-3<8b-5