K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 4 2023

a)

`a<b`

`<=>3a<3b`

`<=>3a-5<3b-5`

b)

`a<b`

`<=>-8a> -8b`

`<=>-8a-3> -8b-3`

c)

`a<b`

`<=>4a<4b`

`<=>4a+9<4b+9`

mà `4a-7<4a+9`

`<=>4a-7<4b+9`

18 tháng 4 2018

a) Vì a>b

=>3a>3b

=>5-3a<5-3b

c) vì a>b

=>8a>8b

=>8a-3>8b-3

c) vì a>b

=>8a>8b

Vì 3<5

=>8a-3<8b-5

15 tháng 3 2018

a. Ta có: a > b ⇔ 3a > 3b ⇔ 3a + 5 > 3b + 5 (1)

Mặt khác: 3b + 5 > 3b + 2 (2)

Từ (1) và (2) suy ra: 3a + 5 > 3b + 2

b. Ta có: a > b ⇔ -4a < -4b ⇔ 3 – 4a < 3 – 4b (1)

Mặt khác: 2 – 4a < 3 – 4a (2)

Từ (1) và (2) suy ra: 2 – 4a < 3 – 4b

23 tháng 3 2023

a. Ta có: a > b ⇔ 3a > 3b ⇔ 3a + 5 > 3b + 5 (1)

Mặt khác: 3b + 5 > 3b + 2 (2)

Từ (1) và (2) suy ra: 3a + 5 > 3b + 2

b. Ta có: a > b ⇔ -4a < -4b ⇔ 3 – 4a < 3 – 4b (1)

Mặt khác: 2 – 4a < 3 – 4a (2)

Từ (1) và (2) suy ra: 2 – 4a < 3 – 4b

22 tháng 4 2020

2,

a, Nếu 2a + 4 \(\ge\) 2b + 4

thì 2a \(\ge\) 2b hay a \(\ge\) b

b, Nếu 3a - 5 \(\le\) 3b - 5

thì 3a \(\le\) 3b hay a \(\le\) b

3,

a, Nếu a \(\le\) b thì a - b \(\le\) 0 hay 2019(a - b) \(\le\) 0 hay 2019a \(\le\) 2019b hay 2019a + 2020 \(\le\) 2019b + 2020

b, Nếu a \(\le\) b thì -a \(\ge\) -b hay -42a \(\ge\) -42b hay -42a - 24 \(\ge\) -42b - 24

3,

a, Nếu a > b thì 3a > 3b hay 3a + 2 > 3b + 2

b, Nếu a > b thì -a < -b hay -4a < -4b hay -4a - 5 < -4b - 5

Chúc bn học tốt!!

22 tháng 4 2020

cảm ơn bạn nhiều lắm

24 tháng 4 2023

1.

a. -3a - 1 + 1 > -3b - 1 + 1 (cộng cả 2 vế cho 1)

  -3a . \(\left(\dfrac{-1}{3}\right)\) <  -3b . \(\left(\dfrac{-1}{3}\right)\) (nhân cả vế cho \(\dfrac{-1}{3}\) )

         a < b

b. 4a + 3 + (- 3) < 4b + 3 +(- 3) (cộng cả 2 vế cho -3)

   4a . \(\dfrac{1}{4}\) < 4b . \(\dfrac{1}{4}\) (nhân cả 2 vế cho \(\dfrac{1}{4}\) )

        a < b

2. 

a. Ta có: a < b 

3a < 3b ( nhân cả 2 vế cho 3)

3a - 7 < 3b - 7 (cộng cả 2 vế cho - 7 )

b. Ta có: a < b

-2a > -2b (nhân cả 2 vế cho -2)

5 - 2a > 5 - 2b ( cộng cẩ 2 vế cho 5)

c. Ta có: a < b 

2a < 2b (nhân cả vế cho 2)

2a + 3 < 2b + 3 (cộng cả 2 vế cho 3)

d. Ta có: a < b

3a < 3b (nhân cả 2 vế cho 3)

3a - 4 < 3b - 4 (cộng cả 2 vế cho -4)

Ta có: 3 < 4

đến đây ko bắt cầu qua đc chắc đề bài sai

 

 

 

12 tháng 6 2019

3a+5>3b+2
Ta có:
a>b => 3a>3b
=> 3a+5>3b+5
Lại có: 5>2
=> 3b+5>3b+2
=> 3a+5>3b+5>3b+2
Hay 3a+5>3b+2

12 tháng 6 2019

a, vì a > b nên 3a > 3b => 3a + 2 > 3b + 2 (1)

Mà 3a + 2 < 3a + 5 (2)

Từ (1) và (2) suy vô ra : 3a + 5 > 3b+2 (đpcm)

b, vì a > b nên -4a < -4b => 2-4a < 2- 4b

mà 2-4b < 3-4b nên 2-4a < 3-4b

25 tháng 2 2020

\(a^3+a^3+b^3\ge3\sqrt[3]{a^6b^3}=3a^2b\)

\(b^3+b^3+c^3\ge3\sqrt[3]{b^6c^3}=3b^2c\)

\(c^3+c^3+a^3\ge3\sqrt[3]{c^6a^3}=3c^2a\)

Cộng vế theo vế có ngay điều phải chứng minh

25 tháng 2 2020

\(a^5+a^5+a^5+a^5+b^5\ge5\sqrt[5]{a^{20}b^5}=5a^4b\)

\(b^5+b^5+b^5+b^5+c^5\ge5\sqrt[5]{b^{20}c^5}=5b^4c\)

\(c^5+c^5+c^5+c^5+a^5\ge5\sqrt[5]{c^{20}a^5}=5c^4a\)

Cộng lại ta được:\(5\left(a^5+b^5+c^5\right)\ge5\left(a^4b+b^4c+c^4a\right)\)

=> đpcm