Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Có \(A=7^1+7^2+7^3+...+7^{99}+7^{100}=\left(7^1+7^2\right)+\left(7^3+7^4\right)+...\left(7^{99}+7^{100}\right)\)
\(\Leftrightarrow A=7\left(1+7\right)+7^3\left(1+7\right)+...+7^{99}\left(1+7\right)=7.8+7^3.8+...+7^{99}.8=8\left(7+7^3+...+7^{99}\right)\)
Vì \(8\left(7+7^3+...+7^{99}\right)\)chia hết cho 8 nên \(A\)chia hết cho 8 (ĐPCM)
__cho_mình_nha_chúc_bạn_học _giỏi__
A=(7^1+7^2)+(7^3+7^4)+....+(7^99+7^100)
A=7x(1+7)+7^3x(1+7)+....+7^99x(1+7)
A=7x8+7^3x8+.....+7^99x8
A=(7+7^3+....,..+7^99)x8
Vì 7+7^3+.....+7^99 là số tự nhiên
Nên (7+7^3+....+7^99)x8 chia hết cho 8
Vậy 7^1+7^2+7^3+7^4+......+7^99+7^100 chia hết cho 8
k cho mk nhé
A = 7+72 + 73 +....+ 7100
= (7+72) + (73 + 74)+.....+(799+7100)
= 7(1+7) + 73(1+7)+.......+799(1+7)
= 8(7+72+73+.....+ 799) chia hết cho 8
A = 7 + 72 + 73 + ... + 799 + 7100
A = ( 7 + 72 ) + ( 73 + 74 ) + ... + ( 799 + 7100 )
A = ( 1 + 7 ) . 7 + ( 1 + 7 ) . 73 + ... + ( 1 + 7 ) . 799
A = 8 . 7 + 8 . 73 + ... + 8 . 799
A = 8 . ( 7 + 73 + ... + 799 )
=> A chia hết cho 8 (đpcm)
1. 5x+27 là bội của x+1
=> 5x+27 chia hết cho x+1
=> 5(x+1)+22 chia hết cho x+1
Mà 5(x+1) chia hết cho x+1
=> 22 chia hết cho x+1
=> x+1 thuộc Ư(22)
Tiếp theo bạn tự làm nhé
\(A=1+4+4^2+...+4^{2012}=\left(1+4+4^2\right)+4^3\left(1+4+4^2\right)+...+4^{2010}\left(1+4+4^2\right)\)
\(=21+21.4^3+...+21.4^{2010}=21\left(1+4^3+...+4^{2010}\right)⋮21\)
\(B=1+7+7^2+...+7^{101}=\left(1+7\right)+7^2\left(1+7\right)+...+7^{100}\left(1+7\right)\)
\(=8+7^2.8+...+7^{100}.8=8\left(1+7^2+...+7^{100}\right)⋮8\)
a=1+(72+73)+...+798+799
a=1+72(1+7)+...+798(1+7)
a=1+72.8+...+798.8
a=8.(1+72+73+...+798)
=>a:8
phải là :
A= \(7+7^2+7^3+...+7^{99}+7^{100}\)
\(=\left(7+7^2\right)+\left(7^3+7^4\right)+...+\left(7^{99}+7^{100}\right)\)
\(=7.\left(1+7\right)+7^3.\left(1+7\right)+...+7^{99}.\left(1+7\right)\)
\(=7.8+7^3.8+...+7^{99}.8\\ =8.\left(7+7^3+7^{99}\right)\\ \Rightarrow A⋮8\)
Vậy \(A⋮8\)
Thanks bạn nha, mk ghi lộn đề