Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: a2+b2+(a-b)2=c2+d2+(c-d)2
=> [a2+b2+(a-b)2]2=[c2+d2+(c-d)2]2
=>a4+b4+(a-b)4+2.[a2b2+a2.(a-b)2+b2.(a-b)2] = c4+d4+(c-d)4+2.[c2d2+c2.(c-d)2+d2.(c-d)2]
=> a4+b4+(a-b)4+2.[a2b2+(a-b)2.(a2+b2)] = c4+d4+(c-d)4+2.[c2d2+(c-d)2.(c2+d2)] (1)
Mặt khác a2+b2+(a-b)2=c2+d2+(c-d)2
=> 2.(a2+b2-ab)=2.(c2+d2-cd)
=> a2+b2-ab=c2+d2-cd
=> (a2+b2-ab)2=(c2+d2-cd)2
=> (a2+b2)2-2ab.(a2+b2)+a2b2= (c2+d2)2-2cd(c2+d2)+c2d2
=> a2b2+(a2+b2)(a2+b2-2ab)= c2d2+(c2+d2)(c2+d2-2cd)
=> a2b2+(a2+b2)(a+b)2=c2d2+(c2+d2)(c-d)2 (2)
Lấy (1) trừ (2) vế với vế ta được:
a4+b4+(a-b)4=c4+d4+(c-d)4
=> đpcm
Lần sau bạn vào fx viết đề cho rõ nhé :))
\(Gt\Leftrightarrow a^2+b^2+ab=c^2+d^2+cd\)
Bình 2 vế đc:
\(a^4+b^4+2a^3b+2ab^3+3a^2b^2\)\(=c^4+d^4+2c^3d+2cd^3+3c^2d^2\)
\(\Leftrightarrow2\left(a^4+b^4+2a^3b+2ab^3+3a^2b^2\right)\)\(=2\left(c^4+d^4+2c^3d+2cd^3+3c^2d^2\right)\)
\(\Leftrightarrow a^4+b^4+\left(a+b\right)^4=c^4+d^4+\left(c+d\right)^4\)
a2 + b2 + (a + b)2 = c2 + d2 + (c +d)2 => 2.(a2 + b2) + 2ab = 2.(c2 + d2) + 2cd
=> a2 + b2 + ab = c2 + d2 + cd (1)
+) a4 + b4 + (a + b)4 = (a2 + b2)2 - 2a2.b2 + (a + b)4 = [(a2 + b2)2 - a2.b2] + [(a + b)4 - a2.b2]
= (a2 + b2 - ab). (a2 + b2 + ab) + [(a + b)2 - ab].[(a+ b)2 + ab]
= (a2 + b2 - ab). (a2 + b2 + ab) + (a2 + b2 + ab). (a2 + b2 + 3ab) = (a2 + b2 + ab). [(a2 + b2 - ab) + (a2 + b2 + 3ab)]
= 2.(a2 + b2 + ab).(a2 + b2 + ab) = 2.(a2 + b2 + ab)2 (2)
Tương tự: c4 + d4 + (c+d)4 = 2. (c2 + d2 + cd)2 (3)
Từ (1)(2)(3) => đpcm