K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 12 2017

Ta có: a2+b2+(a-b)2=c2+d2+(c-d)2

=> [a2+b2+(a-b)2]2=[c2+d2+(c-d)2]2

=>a4+b4+(a-b)4+2.[a2b2+a2.(a-b)2+b2.(a-b)2] = c4+d4+(c-d)4+2.[c2d2+c2.(c-d)2+d2.(c-d)2]

=> a4+b4+(a-b)4+2.[a2b2+(a-b)2.(a2+b2)] = c4+d4+(c-d)4+2.[c2d2+(c-d)2.(c2+d2)] (1)

Mặt khác a2+b2+(a-b)2=c2+d2+(c-d)2

=> 2.(a2+b2-ab)=2.(c2+d2-cd)

=> a2+b2-ab=c2+d2-cd

=> (a2+b2-ab)2=(c2+d2-cd)2

=> (a2+b2)2-2ab.(a2+b2)+a2b2= (c2+d2)2-2cd(c2+d2)+c2d2

=> a2b2+(a2+b2)(a2+b2-2ab)= c2d2+(c2+d2)(c2+d2-2cd)

=> a2b2+(a2+b2)(a+b)2=c2d2+(c2+d2)(c-d)(2)

Lấy (1) trừ (2) vế với vế ta được:

a4+b4+(a-b)4=c4+d4+(c-d)4

=> đpcm

21 tháng 9 2018

giúp mình nhé tài liệu bồi dưỡng học sinh giỏi lớp

24 tháng 8 2015

a2 + b+ (a + b)= c+ d2 + (c +d)2 => 2.(a+ b2) + 2ab = 2.(c+ d2) + 2cd

=> a+ b+ ab = c+ d+ cd   (1)

+) a+ b+ (a + b)4 = (a2 + b2)2  - 2a2.b2 + (a + b)4 = [(a+ b2)2 - a2.b2] + [(a + b)- a2.b2]

= (a2 + b2 - ab). (a2 + b2 + ab) +  [(a + b)2 - ab].[(a+ b)+ ab]

=  (a2 + b- ab). (a+ b2 + ab) + (a2 + b2 + ab). (a2 + b+ 3ab) = (a+ b+ ab). [(a2 + b- ab) + (a2 + b2 + 3ab)]

= 2.(a+ b2 + ab).(a2 + b2 + ab) = 2.(a2 + b2 + ab)2           (2)

Tương tự: c+ d4 + (c+d)4 = 2. (c2 + d2 + cd)2   (3)

Từ (1)(2)(3) => đpcm

9 tháng 3 2019

a ) Áp dụng BĐT phụ \(a^2+b^2\ge2ab\) cho các cặp số thực , ta có :

\(\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)\ge2a.2b.2c=8abc\)

Dấu " = " xảy ra \(\Leftrightarrow a=b=c=1\)

b ) Làm tương tự như a )

9 tháng 3 2019

Ta có: \(\left(a-b\right)^2\ge0\Leftrightarrow a^2-2ab+b^2\ge0\Leftrightarrow a^2+b^2\ge2ab\)

a) Lại có : \(\left(a-1\right)^2\ge0\Leftrightarrow...\Leftrightarrow a^2+1\ge2a\)

cmtt \(\Rightarrow\left\{{}\begin{matrix}b^2+1\ge2b\\c^2+1\ge2c\end{matrix}\right.\)

Nhân vế theo vế ta đc: \(\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)\ge2a.2b.2c=8abc\left(dpcm\right)\)

b) Tiếp tục có \(\left(a-2\right)^2\ge0\Leftrightarrow...\Leftrightarrow a^2+4\ge4a\)

CMTT: \(\Rightarrow\left\{{}\begin{matrix}b^2+4\ge4b\\c^2+4\ge4c\end{matrix}\right.\)

Nhân vế theo vế ta đc: \(\left(a^2+4\right)\left(b^2+4\right)\left(c^2+4\right)\ge4a.4b.4c=256abc\left(dpcm\right)\)

2 tháng 5 2021

b, Ta có \(m=a+b+c\)

          \(\Rightarrow am+bc=a\left(a+b+c\right)+bc=a\left(a+b\right)+ac+bc=\left(a+c\right)\left(a+b\right)\)

CMTT \(bm+ac=\left(b+c\right)\left(b+a\right)\);\(cm+ab=\left(c+a\right)\left(c+b\right)\)

Suy ra \(\left(am+bc\right)\left(bm+ac\right)\left(cm+ab\right)=\left(a+b\right)^2\left(a+c\right)^2\left(b+c\right)^2\)

9 tháng 3 2019

(a^2+b^2)/2>=ab

<=>(a^2+b^2)>=2ab

 <=> a^2+2ab+b^2>=2ab 

<=>a^2+b^2>=0(luôn đúng)

=> điều phải chứng minh.

9 tháng 3 2019

Xét hiệu:  \(a^2+b^2-2ab=\left(a-b\right)^2\ge0\)

=>  \(a^2+b^2\ge2ab\)

Dấu "=" xra  <=>  a = b

Áp dụng ta có:

a)  \(\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)\ge2a.2b.2c=8abc\)

dấu "=" xra  <=>  a = b = c = 1

b)  \(\left(a^2+4\right)\left(b^2+4\right)\left(c^2+4\right)\left(d^2+4\right)\ge4a.4b.4c.4d=256abcd\)

Dấu "=" xra  <=>  a = b= c = d = 2