K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 8 2016

\(A=1+9^{19}+93^{199}+1993^{1994}\)

Ta có :

\(9\text{≡}0\left(mod3\right)\)

\(\Rightarrow9^{19}\text{≡}0\left(mod3\right)\)

\(93\text{≡}0\left(mod3\right)\)

\(\Rightarrow93^{199}\text{≡}0\left(mod3\right)\)

\(1993\text{≡}1\left(mod3\right)\)

\(\Rightarrow1993^{1994}\text{≡}1\left(mod3\right)\)

\(\Rightarrow A=1+9^{19}+93^{199}+1993^{1994}\text{≡}1+0+0+1\text{≡}2\left(mod3\right)\)

Một số nguyên có thể có dạng \(3k;3k+1\)hoặc \(3k+2\)

TH1 : \(\left(3k\right)^2=9k^2\text{≡}0\left(mod3\right)\)

TH2 : \(3k+1\text{≡}1\left(mod3\right)\)

\(\Rightarrow\left(3k+1\right)^2\text{≡}1\left(mod3\right)\)

TH3 : \(3k+2\text{≡}2\left(mod3\right)\)

\(\Rightarrow\left(3k+2\right)^2\text{≡}2^2\text{≡}1\left(mod3\right)\)

Do đó số chính phương nào cũng chia hết cho 3 hoặc chia 3 dư 1.

Mà \(A\text{≡}2\left(mod3\right)\)hay \(A\)chia 3 dư 2 nên A không phải số chính phương.

Vậy ...

10 tháng 7 2017

hỏi làm chi mò , tự làm cũng ra mà .

10 tháng 7 2017

hỏi cho chắc mà

10 tháng 2 2017

bao minh bai nay: n-1 chia het cho n+3

28 tháng 1 2020

có 

vì : A= 1992 + 19932 +19942 + 19952    ( sau khi tìm số tận cùng của các số )

=) ta có A= .......1 + ........9 + .........6  + ...........5 = ..........1

Mà 1 số chính phương có số tận cùng là 1 

=) A là số chính phương

9 tháng 7 2017

1. a) Đặt \(A=1+19^{19}+93^{199}+1993^{1994}\)

\(\Rightarrow A=1+\left(19\right)^{19}+\left(93^2\right)^{99}.93+\left(1993^2\right)^{997}\)

\(=1+\left(...9\right)+\left(...9\right).93+\left(...9\right)\)

\(=...26\)

Nếu là số chính phương có chữ số tận cùng là 6 thì hàng chục là số lẻ.

Ở đây ta thấy hàng chục là số 2 ( số chẵn )

\(\Rightarrow\) \(1+19^{19}+93^{199}+1993^{1994}\) không phải là số chính phương.

b) \((2k+1).2k.(2k-1) \)

\((2k+1)^2 +4k^2 +(2k-1)^2\)

\(=4k^2 +4k +1 +4k^2 +4k^2 -4k +1\)

\(=12k^2+2\) chia hết cho 2 không chia hết cho 4.

\(\Rightarrow\) Tổng của 3 số chính phương liên tiếp không phải là số chính phương.

2. Câu hỏi của Trần Nhật Ái - Toán lớp 8

9 tháng 7 2017

thì ra là bn có người nhwof nhưng máu iếng nổi lên h có bn làm khỏe

2 tháng 9 2017

a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)

b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)

=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)

c)Đặt x-y=a;y-z=b;z-x=c

a+b+c=x-y-z+z-x=o

đưa về như bài b

d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung

e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)

=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)