K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 7 2019

bài này mình làm trong vở ,mình đã chụp ảnh lại lời giải,bạn chịu khó mở trang của mình ra xem nha

Bạn tham khảo bài toán số 21 nha : https://olm.vn/hoi-dap/detail/11112433588.html

~ Học tốt ~

10 tháng 2 2017

bao minh bai nay: n-1 chia het cho n+3

28 tháng 7 2019

ab+1= 111...12 x 111...14 +1 

= 111...12 x (111...12+2) +1

= 111...12 x 111...12 + 2 x 111...12 +1 

=( 111...12 +1 )2 = 111...132

28 tháng 7 2019

de do roi mat to cos cach khac:)

\(a=1111.....12\) (n chu so 1)

\(\Rightarrow a=1111...11+1\)(n+1 chu so 1)

\(b=111....14\)(n chu so 1)

\(\Rightarrow b=111....1+3\)

Ta co:\(a=\frac{10^{n+1}-1}{9}+1\)

\(b=\frac{10^{n+1}-1}{9}+3\)

Dat \(\frac{10^{n+1}-1}{9}=x\)

Ta co:

\(ab+1=\left(x+1\right)\left(x+3\right)+1=x^2+4x+4=\left(x+2\right)^2\)

Thay vao ta duoc:

\(ab+1=\left(111....13\right)^2\)

P/S:Mac du dai hon nhung se tot hon cho ai roi nao (dua thoi).Hihi!

8 tháng 8 2021

Bài 1:

Ta : a + b - 2c = 0

⇒ a = 2c − b thay vào a2 + b2 + ab - 3c2 = 0 ta có:

(2c − b)2 + b2 + (2c − b).b − 3c2 = 0

⇔ 4c2 − 4bc + b2 + b2 + 2bc − b2 − 3c2 = 0

⇔ b2 − 2bc + c2 = 0

⇔ (b − c)2 = 0

⇔ b − c = 0

⇔ b = c

⇒ a + c − 2c = 0

⇔ a − c = 0

⇔ a = c

⇒ a = b = c 

Vậy a = b = c

8 tháng 8 2021

hình như sai đề rồi ạ, đề của em là a2 + b2 - ca - cb = 0 ạ

27 tháng 12 2017

12345678

28 tháng 12 2017

\(A=a\left(a+1\right)\left(a+2\right)\left(a+4\right)\left(a+5\right)\left(a+6\right)+36\)

\(A=a\left(a+6\right)\left(a+2\right)\left(a+4\right)\left(a+5\right)\left(a+1\right)+36\)

\(A=\left(a^2+6a\right)\left(a^2+6a+8\right)\left(a^2+6a+5\right)+36\)

Đặt t = a2 +6a. Khi đó phương trình trở thành:

\(A=t\left(t+8\right)\left(t+5\right)+36\)

\(A=t\left(t^2+13t+40\right)+36\)

\(A=t^3+13t^2+40t+36\)

\(A=t^3+2t^2+11t^2+22t+18t+36\)

\(A=t^2\left(t+2\right)+11t\left(t+2\right)+18\left(t+2\right)\)

\(A=\left(t+2\right)\left(t^2+11t+18\right)\)

\(A=\left(t+2\right)\left(t^2+2t+9t+18\right)\)

\(A=\left(t+2\right)\left[t\left(t+2\right)+9\left(t+2\right)\right]\)

\(A=\left(t+2\right)\left(t+2\right)\left(t+9\right)\)

\(A=\left(t+2\right)^2\left(t+9\right)\)

Thế t = a2 + 6a vào A ta được:

\(A=\left(a^2+6a+2\right)^2\left(a^2+6a+9\right)\)

\(A=\left(a+3\right)^2\left(a^2+6a+2\right)^2\)

\(A=\left[\left(a+3\right)\left(a^2+6a+2\right)\right]^2\)

Vậy với mọi số nguyên a thì giá trị của biểu thức A luôn là một số chính phương