Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chắc là N? Vì M mà sao đằng sau lại là \(NA^2+NB^2\)?
Do N thuộc \(\Delta\) nên tọa độ có dạng \(N\left(6t;4t+2\right)\Rightarrow\left\{{}\begin{matrix}\overrightarrow{AN}=\left(6t-1;4t\right)\\\overrightarrow{BN}=\left(6t+3;4t-3\right)\end{matrix}\right.\)
\(\Rightarrow NA^2+NB^2=\left(6t-1\right)^2+16t^2+\left(6t+3\right)^2+\left(4t-3\right)^2=104t^2+19\ge19\)
Dấu "=" xảy ra khi \(t=0\Rightarrow N\left(0;2\right)\)
Gọi \(M\left(0;m\right)\Rightarrow\left\{{}\begin{matrix}\overrightarrow{AM}=\left(-1;m+2\right)\\\overrightarrow{BM}=\left(3;m-2\right)\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}MA=\sqrt{1+\left(m+2\right)^2}=\sqrt{m^2+4m+5}\\MB=\sqrt{9+\left(m-2\right)^2}=\sqrt{m^2-4m+13}\end{matrix}\right.\)
a.
\(MA+MB=\sqrt{1^2+\left(m+2\right)^2}+\sqrt{3^2+\left(2-m\right)^2}\)
\(MA+MB\ge\sqrt{\left(1+3\right)^2+\left(m+2+2-m\right)^2}=4\sqrt{2}\)
Dấu "=" xảy ra khi \(2-m=3\left(m+2\right)\Leftrightarrow m=-1\)
Hay \(M\left(0;-1\right)\)
b.
\(\left|MA-MB\right|\ge0\)
Dấu "=" xảy ra khi \(MA=MB\Leftrightarrow m^2+4m+5=m^2-4m+13\)
\(\Leftrightarrow m=1\Rightarrow M\left(0;1\right)\)
Thay tọa độ A và B vào pt \(\Delta\) được 2 giá trị trái dấu \(\Rightarrow A;B\) nằm khác phía so với \(\Delta\)
\(\Rightarrow MA+MB\) nhỏ nhất khi và chỉ khi M nằm trên giao điểm của đường thẳng AB và \(\Delta\)
\(\overrightarrow{AB}=\left(1;2\right)\Rightarrow\) đường thẳng AB nhận (2;-1) là 1 vtpt
Phương trình AB: \(2\left(x+1\right)-1\left(y-1\right)=0\Leftrightarrow2x-y+3=0\)
Tọa độ M là nghiệm: \(\left\{{}\begin{matrix}2x-y+3=0\\x+y-2=0\end{matrix}\right.\) \(\Rightarrow M\left(-\dfrac{1}{3};\dfrac{7}{3}\right)\)
\(M\in\left(d\right)\Rightarrow M\left(a;a+6\right)\Rightarrow\left\{{}\begin{matrix}MA=\sqrt{\left(a-2\right)^2+\left(a+4\right)^2}=\sqrt{2\left(a+1\right)^2+18}\\MB=\sqrt{\left(a-3\right)^2+\left(a+6\right)^2}=\sqrt{2\left(a+\dfrac{3}{2}\right)^2+\dfrac{81}{2}}=\sqrt{2\left(-\dfrac{3}{2}-a\right)^2+\dfrac{81}{2}}\end{matrix}\right.\)
\(\Rightarrow MA+MB=\sqrt{\sqrt{2}^2\left(a+1\right)^2+18}+\sqrt{\sqrt{2}^2\left(-\dfrac{3}{2}-a\right)^2+\dfrac{81}{2}}\ge\sqrt{\left(\sqrt{2}.a+\sqrt{2}-\dfrac{3}{2}.\sqrt{2}-\sqrt{2}.a\right)^2+\left(\sqrt{18}+\sqrt{\dfrac{81}{2}}\right)^2}=\sqrt{\dfrac{1}{2}+\dfrac{225}{2}}=\sqrt{133}\)
\(dấu"="xayra\Leftrightarrow\dfrac{\sqrt{2}\left(a+1\right)}{\sqrt{18}}=\dfrac{\sqrt{2}\left(-\dfrac{3}{2}-a\right)}{\sqrt{\dfrac{81}{2}}}\Leftrightarrow a=-\dfrac{6}{5}\Rightarrow M\left(-\dfrac{6}{5};\dfrac{24}{5}\right)\)
Do M thuộc \(\Delta\) nên tọa độ có dạng \(M\left(3t;2-t\right)\)
\(\Rightarrow\left\{{}\begin{matrix}\overrightarrow{AM}=\left(3t-1;-t\right)\\\overrightarrow{BM}=\left(3t+3;-t-3\right)\end{matrix}\right.\)
Đặt \(P=MA^2+MB^2=\left(3t-1\right)^2+\left(-t\right)^2+\left(3t+3\right)^2+\left(-t-3\right)^2\)
\(P=20t^2+18x+19=20\left(t+\dfrac{9}{20}\right)^2+\dfrac{299}{20}\ge\dfrac{299}{20}\)
Dấu = xảy ra khi \(t=-\dfrac{9}{20}\Rightarrow M\left(-\dfrac{27}{20};\dfrac{49}{20}\right)\)