Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : m và n là các số nguyên dương
Và \(A=\frac{2+4+6+...+2m}{m}=\frac{2.\left(1+2+....+m\right)}{m}=\frac{2.\left(m-1\right).m}{m}=2.\left(m-1\right)\)
B = \(\frac{2+4+6+...+2n}{n}=\frac{2.\left(1+2+3+...+n\right)}{n}=\frac{2.\left(n-1\right).n}{n}=2.\left(n-1\right)\)
Mà A < B
Nên 2 . ( m - 1 ) < 2 . ( n - 1 )
Do đó m - 1 < n - 1
Và m < n
Vậy m < n
Từ \(\frac{a}{b}\)> 1, Suy ra: an < bn
Suy ra: an + ab < bn + ab
Suy ra: a (n + b) < b (n + a)
Suy ra: \(\frac{a}{b}\)> \(\frac{a+n}{b+n}\)
Nhầm, Suy ra: an > bn
Suy ra: an + ab > bn + ab
Suy ra: a (n + b) > b (n + a)
VỚI A>B SUY RA A/B >1 => (A+N)B=AB+BN>AB+AN=A(B+N)=>A+N/B+N > A/B
VỚI A<B TƯƠNG TỰ SUY RA A+N/B+N < A/B
VỚI A=B SUY RA A+N/B+N = A/B
Ta có:
\(\frac{a}{b}=\frac{a\left(b+n\right)}{b\left(b+n\right)}=\frac{ab+an}{b^2+bn}\)
\(\frac{a+n}{b+n}=\frac{\left(a+n\right)b}{\left(b+n\right)b}=\frac{ab+bn}{b^2+bn}\)
TH1 : a < b ; ta có :
\(ab+an< ab+bn\)
\(\Rightarrow\frac{a}{b}< \frac{a+n}{b+n}\)
TH2: a > b ta có:
\(ab+an>ab+bn\)
\(\Rightarrow\frac{a}{b}>\frac{a+n}{b+n}\)
Với \(a=b\) thì \(\frac{a}{b}=\frac{a+n}{b+n}=1\)
Vì a,b \(\in\)N* nên \(\frac{a+n}{b+n}>\frac{a}{b}\)(dựa vào công thức )
Vậy \(\frac{a+n}{b+n}>\frac{a}{b}\)
Trả lời :
Ta xét 3 trường hợp : \(\frac{a}{b}\)= 1
\(\frac{a}{b}\)> 1
\(\frac{a}{b}\)< 1
TH1 : \(\frac{a}{b}\)= 1 <=> a = b thì \(\frac{a+n}{b+n}\)= \(\frac{a}{b}\)=1
TH2 : \(\frac{a}{b}\)> 1 <=> a > b <=> a + n > b + n
Mà \(\frac{a+n}{b+n}\) có phần thừa so với 1 là \(\frac{a-b}{b+n}\)
\(\frac{a}{b}\)có phần thừa so với 1 là \(\frac{a-b}{b}\), vì \(\frac{a-b}{b+n}\)< \(\frac{a-b}{b}\)nên \(\frac{a+n}{b+n}\)< \(\frac{a}{b}\)
TH3 : \(\frac{a}{b}\)< 1 <=> a < b <=> a + n < b + n
Khi đó \(\frac{a+n}{b+n}\)có phần bù tới 1 là \(\frac{a-b}{b}\) , vì \(\frac{a-b}{b}\)< \(\frac{b-a}{b+n}\)nên \(\frac{a+n}{b+n}\)> \(\frac{a}{b}\)
Để \(B\in Z\Rightarrow5n+8⋮6n+7\)
\(\Rightarrow6.\left(5n+8\right)⋮6n+7\)
\(\Rightarrow30n+48⋮6n+7\)
\(\Rightarrow5.\left(6n+7\right)+13⋮6n+7\)
\(\Rightarrow13⋮6n+7\Rightarrow6n+7\inƯ\left(13\right)=\pm1;\pm13\)
b,GỌI Ư CLN\(\left(5n+8;6n+7\right)=d\)
\(\Rightarrow\)\(\hept{\begin{cases}5n+8⋮d\Rightarrow6.\left(5n+8\right)⋮d\Rightarrow30n+48⋮d\\6n+7⋮d\Rightarrow5.\left(6n+7\right)⋮d\Rightarrow30n+35⋮d\end{cases}}\)
\(\Rightarrow\left(30n+48\right)-\left(30n+35\right)⋮d\)
\(\Rightarrow13⋮d\Rightarrow d=1;-1;13;-13\)
\(+d=13\Rightarrow6n+7⋮13\Rightarrow2.\left(6n+7\right)⋮13\)
\(\Rightarrow12n+14⋮13\)
\(\Rightarrow\left(12n+n\right)+\left(14-n\right)⋮13\)
\(\Rightarrow13n+\left(14-n\right)⋮13\)
\(\Rightarrow14-n=13k\)
\(\Rightarrow n=14-13k\)
Vậy \(n=14-13k\)thì B rút gọn đc
mình nhầm câu b:
Áp dụng....
A=10^11-1/10^12-1<10^11-1+11/10^12-1+11=10^11+10/10^12+10=10.(10^10+1)/10.(10^11+1)
=10^10+1/10^11+1=B
Vậy A<B(câu này mới đúng còn câu b mình làm chung với câu a là sai)
a) Với a<b=>a+n/b+n >a/b
Với a>b=>a+n/b+n<a/b
Với a=b=>a+n/b+n=a/b
b) Áp dụng t/c a/b<1=>a/b<a+m/b+m(a,b,m thuộc z,b khác 0)ta có:
A=(10^11)-1/(10^12)-1=(10^11)-1+11/(10^12)-1+11=(10^11)+10/(10^12)+10=10.[(10^10)+1]/10.[(10^11)+1]
=(10^10)+1/(10^11)+1=B
Vậy A=B