Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
$A=1+3+3^2+3^3+....+3^{2026}$
$=1+3+3^2+(3^3+3^4+3^5+3^6)+(3^7+3^8+3^9+3^{10})+....+(3^{2023}+3^{2024}+3^{2025}+3^{2026})$
$=13+3^2(3+3^2+3^3+3^4)+3^6(3+3^2+3^3+3^4)+...+3^{2022}(3+3^2+3^3+3^4)$
$=13+(3^2+3^6+...+3^{2022})(3+3^2+3^3+3^4)$
$=13+(3^2+3^6+...+3^{2022}).120$
$\Rightarrow A$ chia $120$ dư $13$
\(A=3+3^2+3^3+...+3^{100}+3^{101} \)
\(\Leftrightarrow A=3+\left(3^2+3^3+3^4+3^5\right)+\left(3^6+3^7+3^8+3^9\right)+...+\left(3^{98}+3^{99}+3^{100}+3^{101}\right)\)
\(\Leftrightarrow A=3+3\left(3+3^2+3^3+3^4\right)+3^2\left(3+3^2+3^3+3^4\right)+...+3^{97}\left(3+3^2+3^3+3^4\right)\)
mà \(3+3^2+3^3+3^4=120 ⋮ 120\) vậy A chia 120 dư 3
Theo bài ra ta có :
a : 3 dư 2 =>a+1 chia hết cho 3
a:7 dư 6 => a+1 chia hết cho 7
=>a+1 chia hết cho 21.
=>a+1 là B(21).
=>a+2= 21.k ( k là một số tự nhiên)
a = 21.k -1
a = 21.k -21 + 21 - 1
a = 21.(k-1) + 20
=> a chia cho 21 dư 20 .