Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(\frac{1975}{1976}+\frac{2010}{2011}+\frac{1963}{1968}\right).\left(\frac{1}{3}-\frac{1}{4}-\frac{1}{12}\right)\)
\(=\left(\frac{1975}{1976}+\frac{2010}{2011}+\frac{1963}{1968}\right).0\)
\(=0\)
\(\left(\frac{1975}{1976}+\frac{2010}{2011}+\frac{1963}{1968}\right).\left(\frac{1}{3}-\frac{1}{4}-\frac{1}{12}\right)\)
\(=\left(\frac{1975}{1976}+\frac{2010}{2011}+\frac{1963}{1968}\right).\left(\frac{4}{12}-\frac{3}{12}-\frac{1}{12}\right)\)
\(=\left(\frac{1975}{1976}+\frac{2010}{2011}+\frac{1963}{1968}\right).0\)
\(=0\)
=(1975/1976+2010/2011+1963/1968)x(4/12-3/12-1/12)
=(1975/1976+2010/2011+1963/1968)x0
=0
Sửa đề:
\(\left(\dfrac{1975}{1976}+\dfrac{2010}{2011}+\dfrac{1963}{1968}\right)\times\left(\dfrac{1}{3}-\dfrac{1}{4}-\dfrac{1}{12}\right)\)
\(=\left(\dfrac{1975}{1976}+\dfrac{2010}{2011}+\dfrac{1963}{1968}\right)\times\dfrac{4-3-1}{12}\)
\(=\left(\dfrac{1975}{1976}+\dfrac{2010}{2011}+\dfrac{1963}{1968}\right)\times\dfrac{0}{12}\)
\(=0\)
\(A=\frac{2013}{2014}+\frac{2014}{2015}+\frac{2013}{2013}+\frac{1}{2013}+\frac{1}{2013}=\left(\frac{2013}{2014}+\frac{1}{2013}\right)+\left(\frac{2014}{2015}+\frac{1}{2013}\right)+1\)
Ta có: \(\frac{2013}{2014}+\frac{1}{2013}>\frac{2013}{2014}+\frac{1}{2014}=\frac{2014}{2014}=1\)
\(\frac{2014}{2015}+\frac{1}{2013}>\frac{2014}{2015}+\frac{1}{2015}=\frac{2015}{2015}=1\)
=> A > 1+ 1 + 1 = 3
= ( - 1975 ) - 2014 + 1975
= [ ( - 1975 ) + 1975 ] - 2014
= 0 - 2014
= - 2014
= -1975-2014+1975
=(-1975+1975)-2014
=-2014
bỏ ngoặc đằng trước có dấu trừ thì đổi dấu các số có măt trong ngoặc, rồi nhóm các số giống nhau nhưng trái dấu rồi thực hiện phép tính tong ngoặc thì bằng 0 vav thực hiện các phép tính còn lại ở ngoài ngoặc.
Ta có :
\(1-\frac{1945}{1975}=\frac{6}{395}\)
\(1-\frac{1975}{2005}=\frac{6}{401}\)
Vì \(\frac{6}{395}>\frac{6}{401}\) nên \(1-\frac{1945}{1975}>1-\frac{1975}{2005}\)
\(\Rightarrow\)\(1+\frac{-1945}{1975}-1>1+\frac{-1975}{2005}-1\) ( trừ hai vế cho 1 )
\(\Rightarrow\)\(\frac{-1945}{1975}>\frac{-1975}{2005}\)
\(\Rightarrow\)\(A>B\)
Vậy \(A>B\)
Chúc bạn học tốt ~
Ta có: \(\text{1 + A =}1+\frac{-1945}{1975}=\frac{6}{395}\)
\(1+B=1+\frac{-1975}{2005}=\frac{6}{401}\)
Vì\(\frac{6}{395}>\frac{6}{401}\)nên\(1+A>1+B\)
Suy ra \(A>B\)
Ta có : \(\frac{2014}{2014+1975}< \frac{2014}{1963+2014};\frac{1975}{1963+1975}< 1\)
Vậy: \(A< \frac{2014}{1963+2014}+\frac{1963}{1963+2014}+1\)
\(A< \frac{2014+1963}{1963+2014}+1\)
\(A< 2\)
Cbht
Ta có: \(\frac{2014}{2014+1975}< \frac{2014}{1963+2014}\)
Và \(\frac{1975}{1963+1975}< 1\)
Nên \(A< \frac{2014}{1963+2014}+\frac{1963}{1963+2014}+1\)
\(A< \frac{2014+1963}{1963+2014}+1\)
\(\Rightarrow A< 1+1\) \(\Rightarrow A< 2\)
Vậy: \(A< 2\)
Good luck !!! Rất vui vì giúp đc bạn bạn <3