Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
CHứng minh rằng
Trong n số tự nhiên liên tiếp có 1 số chia hết cho n
giải chi tiết ra nhé
Chứng minh rằng n.(n+1).(n+2) chia hết cho 3
Với mọi số tự nhiên n
Giải chi tiết đầy đủ nha
Vì n, n+1, n+2 là ba số tự nhiên (hoặc số nguyên) liên tiếp nên khi chia cho 3 sẽ có ba số dư khác nhau là 0, 1, 2 suy ra n(n+1)(n+2) chia hết cho 3.
Chúc bạn học giỏi
nhớ k mk nha cac bn
vì mọi số đó trong thế vào n như 1 thì n +2 mà n= 1 thì bằng 3 thì tích đó chia hết cho 3 mà mọi số + 1 x số đó +2 thì trong đó sẽ có 1 lần chia hết cho 3 nhân với 1 số ko chia hết cho 3
Ta thấy : \(n.\left(n+1\right).\left(n+2\right)\)là tích của ba số tự nhiên liên tiếp
Vì n , n +1 , n +2 là ba số tự nhiên liên tiếp nên một trong ba số có một số chia hết cho 3 , một số chia 3 dư 1 , một số chia 3 dư 2
Khi đó \(n.\left(n+1\right).\left(n+2\right)⋮3\)
Vậy .....
Vì n, n+1, n+2 là ba số tự nhiên (hoặc số nguyên) liên tiếp nên khi chia cho 3 sẽ có ba số dư khác nhau là 0, 1, 2 suy ra n(n+1)(n+2) chia hết cho 3.
Chúc bạn học giỏi
nhớ mk nha