K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 8 2017

Vì n, n+1, n+2 là ba số tự nhiên (hoặc số nguyên) liên tiếp nên khi chia cho 3 sẽ có ba số dư khác nhau là 0, 1, 2 suy ra n(n+1)(n+2) chia hết cho 3. 
Chúc bạn học giỏi

nhớ k mk nha cac  bn

13 tháng 8 2017

vì mọi số đó trong thế vào n như 1 thì n +2 mà n= 1 thì bằng  3 thì tích đó chia hết cho 3 mà mọi số + 1 x số đó +2 thì trong đó sẽ  có 1 lần chia hết cho 3 nhân với 1 số ko chia hết cho 3

12 tháng 8 2017

Ta thấy : \(n.\left(n+1\right).\left(n+2\right)\)là tích của ba số tự nhiên liên tiếp 

Vì n , n +1 , n +2 là ba số tự nhiên liên tiếp nên một trong ba số có một số chia hết cho 3 , một số chia 3 dư 1 , một số chia 3 dư 2 

Khi đó \(n.\left(n+1\right).\left(n+2\right)⋮3\)

Vậy .....

12 tháng 8 2017

Vì n, n+1, n+2 là ba số tự nhiên (hoặc số nguyên) liên tiếp nên khi chia cho 3 sẽ có ba số dư khác nhau là 0, 1, 2 suy ra n(n+1)(n+2) chia hết cho 3. 
Chúc bạn học giỏi

nhớ mk nha

20 tháng 11 2019

Với mọi số tự nhiên n.

Ta có: \(n^2+n+1=n\left(n+1\right)+1\)

Do n; n + 1 là hai số tự nhiên liên tiếp 

=> n ( n + 1) chia hết cho 2.

=> n ( n+ 1)  + 1 không chia hết chia hết cho 2

=> \(n^2+n+1\)không chia hết cho 2

=> \(n^2+n+1\) không chia hết cho 4.

Giả sử như mệnh đề trên đúng : 
n^2+1 chia hết cho 4 
* Nếu n chẵn : n = 2k , k thuộc N 
=> n^2 +1 = 4k^2 +1 k chia hết cho 4 
* nếu n lẻ : n = 2k + 1 
=> n^2 +1 = 4k^2 +4k +2 
=> n^2 +1 = 4k(k+1)+2 
k , k +1 là 2 số tự nhiên liên tiếp 
=> k(k+1) chia hết cho 2 
=> 4k(k+1)chia hết cho 4 
=> 4k(k+1)+2 chia cho 4 , dư 2 
=> 4k (k+1)+2 k chia hết cho 4

2 tháng 1 2017



n2+n+2016
=n2+n+1+2015
Ta xét ra 5 trường hợp n2 có chữ số tận cùng là: 1,4,5,6,9.
Bc cuối bạn có thể tự làm nhé.
Chúc may mắn!!!
 

2 tháng 1 2017

+) Xét n=5k

=>\(n^2+n+2016=25k^2+5k+2016=5\left(5k^2+k+403\right)+1\) không chia hết cho 5

+) Xét n=5k+1

=>\(n^2+n+2016=\left(5k+1\right)^2+5k+1+2016=25k^2+10k+1+5k+1+2016\)

\(=25k^2+15k+2018=5\left(5k^2+3k+403\right)+3\) không chia hết cho 5

+) Xét n=5k+2

=>\(n^2+n+2016=\left(5k+2\right)^2+5k+2+2016=25k^2+20k+4+5k+2+2016\)

\(=25k^2+25k+2022=5\left(5k^2+5k+404\right)+2\) không chia hết cho 5

+) Xét n=5k+3

=>\(n^2+n+2016=\left(5k+3\right)^2+5k+3+2016=25k^2+30k+9+5k+3+2016\)

\(=25k^2+35k+2028=5\left(5k^2+7k+405\right)+3\) không chia hết cho 5

+) Xét n=5k+4

=>\(n^2+n+2016=\left(5k+4\right)^2+5k+4+2016=25k^2+40k+16+5k+4+2016\)

\(=25k^2+45k+2036=5\left(5k^2+9k+407\right)+1\) không chia hết cho 5

Từ 5 trường hợp trên => đpcm

30 tháng 6 2017

  + Xét TH1: n chẵn

Suy ra n chia hết 2, do đó n(n + 5) cũng chia hết cho 2.

   + Xét TH2: n lẻ

Suy ra n + 5 chẵn

Do đó (n + 5) chia hết 2

Vậy n(n +5) chia hết cho 2.

22 tháng 10 2016

xét 2 trường hợp:

+ TH1: n chẵn, tức n = 2k.

n.(n+5)=2k.(2k+5) chia hết cho 2.

+ TH2: n lẻ, tức n = 2k+1

n.(n+5)=(2k+1).(2k+6)= (2k+1).2.(k+3) chia hết cho 2.

Vậy với mọi n thì n.(n+5) chia hết cho 2

9 tháng 1 2018

Với n = 2k => n chia hết cho 2

=> n(n + 5) chia hết cho 2

Với n = 2k + 1

=> n + 5 = 2k + 1 + 5 = 2k + 6 chia hết cho 2

=> n + 5 chia hết cho 2

=> n(n + 5) chia hết cho 2

Vậy với mọi số tự nhiên n thì tích n(n + 5) chia hết cho 2.