K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 11 2017

\(\dfrac{xy}{ay+bx}=\dfrac{yz}{bz+cy}=\dfrac{zx}{cx+az}=\dfrac{x^2+y^2+z^2}{a^2+b^2+c^2}\left(1\right)\)

Ta có: \(\dfrac{xy}{ay+bx}=\dfrac{yz}{bz+cy}=\dfrac{zx}{cx+az}\)

\(\Rightarrow\dfrac{xyz}{ayz+bxz}=\dfrac{xyz}{bxz+cxy}=\dfrac{xyz}{cxy+ayz}\)

\(\Rightarrow ayz+bxz=bxz+cxy=cxy+ayz\)

\(\Rightarrow\left\{{}\begin{matrix}ayz+bxz=bxz+cxy\\ayz+bxz=cxy+ayz\\bxz+cxy=cxy+ayz\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}ayz=cxy\\bxz=cxy\\bxz=ayz\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}az=cx\\bz=cy\\bx=ay\end{matrix}\right.\left(2\right)\)

Thay (2) vào (1) ta có :

\(\dfrac{xy}{2ay}=\dfrac{yz}{2bz}=\dfrac{xz}{2cx}=\dfrac{x^2+y^2+z^2}{a^2+b^2+c^2}\)

\(\Rightarrow\dfrac{x}{2a}=\dfrac{y}{2b}=\dfrac{z}{2c}=\dfrac{x^2+y^2+z^2}{a^2+b^2+c^2}\left(3\right)\)

\(\Rightarrow\dfrac{x^2}{4a^2}=\dfrac{y^2}{4b^2}=\dfrac{z^2}{4c^2}=\dfrac{\left(x^2+y^2+z^2\right)^2}{\left(a^2+b^2+c^2\right)^2}=\)\(\dfrac{x^2+y^2+z^2}{4a^2+4b^2+4c^2}\)

\(\Rightarrow\dfrac{x^2+y^2+y^2}{a^2+b^2+c^2}=\dfrac{1}{4}\left(4\right).\)Thay (3) vào (2) ta có :

\(\dfrac{x}{2a}=\dfrac{y}{2b}=\dfrac{z}{2c}=\dfrac{1}{4}\Rightarrow\left\{{}\begin{matrix}x=\dfrac{a}{2}\\y=\dfrac{b}{2}\\z=\dfrac{c}{2}\end{matrix}\right.\)

25 tháng 11 2017

CD+CH+CA=3C haha

Violympic toán 7

14 tháng 11 2016

Từ giả thiết suy ra (ay+bx)/xy = (bz+cy)/yz =(cx+az)/xz  hay a/x =b/y =c/z.

dặt x/a =y=b =z/c =k suy ra x =ak; y=bk; z=ck. thay vào biểu thức bài cho tìm được k=1/2

vậy x =a/2; y=b/2; z=c/2

14 tháng 6 2020

\(\frac{xy}{ay+bx}\)=\(\frac{yz}{bz+cy}\)=\(\frac{zx}{cx+az}\left(1\right)\)

\(\Rightarrow\)\(\frac{xyz}{ayz+bxz}\)=\(\frac{xyz}{bzx+cyx}\)=\(\frac{zyx}{cxy+azy}\)

\(\Rightarrow\)\(ayz+bxz=bzx+cyx=cxy+azy\)

\(\Rightarrow\)\(\hept{\begin{cases}ayz+bxz=bxz+cyx\\bzx+cyx=cxy+azy\\ayz+bxz=cxy+azy\end{cases}}\Rightarrow\hept{\begin{cases}ayz=cyx\\bzx=azy\\bxz=cxy\end{cases}}\)\(\Rightarrow\hept{\begin{cases}az=cx\\bx=ay\\bz=cy\end{cases}\left(2\right)}\)

thay (2) vào (1)

\(\Rightarrow\)\(\frac{xy}{2ay}\)=\(\frac{yz}{2bz}\)=\(\frac{zx}{2cx}\)

\(\Rightarrow\)\(\frac{x}{2a}=\frac{y}{2b}=\frac{z}{2c}\)\(=\frac{x^2+y^2+z^2}{a^2+b^2+c^2}\left(3\right)\)

\(\Rightarrow\left(\frac{x}{2a}\right)^2=\left(\frac{y}{2b}\right)^2=\left(\frac{z}{2c}\right)^2\)

\(\Rightarrow\text{​​}\text{​​}\)\(\frac{x^2}{4a^2}=\frac{y^2}{4b^2}=\frac{z^2}{4c^2}\)

theo quy luật của dãy số bằng nhau, nên

\(\frac{x^2}{4a^2}=\frac{y^2}{4b^2}=\frac{z^2}{4c^2}=\)\(\frac{x^2+y^2+z^2}{4a^2+4b^2+4c^2}=\frac{\left(x^2+y^2+z^2\right)}{4\left(a^2+b^2+c^2\right)}=\frac{1}{4}\left(4\right)\)

từ (3) và (4)

\(\Rightarrow\)\(\frac{x}{2a}=\frac{y}{2b}=\frac{z}{2c}=\frac{1}{4}\)

\(\Rightarrow\hept{\begin{cases}x=\frac{a}{2}\\y=\frac{b}{2}\\c=\frac{c}{2}\end{cases}}\)

18 tháng 3 2022

`Answer:`

\(\frac{xy}{ay+bx}=\frac{yz}{bz+cy}=\frac{zx}{cx+ax}=\frac{x^2+y^2+z^2}{a^2+b^2+c^2}\left(1\right)\)

Theo đề ra, có: \(\frac{xy}{ay+bx}=\frac{yz}{bz+cy}=\frac{zx}{cx+az}\)

\(\Rightarrow\frac{xyz}{ayz+bxz}=\frac{xyz}{bxz+cxy}=\frac{xyz}{cxy+ayz}\)

\(\Rightarrow ayz+bxz=bxz+cxy=cxy+ayz\)

\(\Rightarrow\hept{\begin{cases}ayz+bxz=bxz+cxy\\ayz+bxz=cxy+ayz\\bxz+cxy=cxy+ayz\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}ayz=cxy\\bxz=cxy\\bxz=ayz\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}az=cx\\bz=cy\\bx=ay\end{cases}}\left(2\right)\)

Thế (2) và (1): \(\frac{xy}{2ay}=\frac{yz}{2bz}=\frac{xz}{2cx}=\frac{x^2+y^2+z^2}{a^2+b^2+c^2}\)

\(\Rightarrow\frac{x}{2a}=\frac{y}{2b}=\frac{z}{2c}=\frac{x^2+y^2+z^2}{a^2+b^2+c^2}\left(3\right)\)

\(\Rightarrow\frac{x^2}{4a^2}=\frac{y^2}{4b^2}=\frac{z^2}{4c^2}=\frac{\left(x^2+y^2+z^2\right)^2}{\left(a^2+b^2+c^2\right)^2}=\frac{x^2+y^2+z^2}{4a^2+4b^2+4c^2}\)

\(\Rightarrow\frac{x^2+y^2+z^2}{a^2+b^2+c^2}=\frac{1}{4}\)

Thế (3) vào (2): \(\frac{x}{2a}=\frac{y}{2b}=\frac{z}{2c}=\frac{1}{4}\)

\(\Rightarrow\hept{\begin{cases}x=\frac{a}{2}\\y=\frac{b}{2}\\z=\frac{c}{2}\end{cases}}\)