K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 4 2020

a2 + b2 = c2 + d2

\(\Rightarrow\)a2 + b2 + c2 + d2 = 2 ( a2 + b2 ) \(⋮\)2 nên là hợp số

Ta có : a2 + b2 + c2 + d2 - ( a + b + c + d ) 

= a ( a - 1 ) + b ( b - 1 ) + c ( c - 1 ) + d ( d - 1 ) \(⋮\)2

\(\Rightarrow\)a + b + c + d \(⋮\)2 nên cũng là hợp số

9 tháng 1 2019

Câu 1 .

\(\left|x^2+|x+1|\right|=x^2+5\)

\(Đkxđ:x^2+5\ge0\)

\(\Leftrightarrow x^2\ge-5,\forall x\) ( với mọi x , vì bất cứ số nào bình phương cũng lớn hơn hoặc bằng - 5 ) 

\(\Leftrightarrow\hept{\begin{cases}x^2+\left|x+1\right|=x^2+5\\x^2+\left|x+1\right|=-x^2-5\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}\left|x+1\right|=5\\\left|x+1\right|=-2x^2-5\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x+1=5;x+1=-5\\x+1=-2x^2-5;x+1=2x^2+5\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=4;x=-6\\2x^2+x+1=0;-2x^2+x-4=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=4;x=-6\\2x^2+x+1=0\left(VN\right);-2x^2+x-4=0\left(VN\right)\end{cases}}\) ( VN là vô nghiệm nha ) 

Vậy : x = 4 hoặc x = -6 

1 tháng 3 2015

Hoặc 

Xét ( a2 + b2 + c2 + d2 )  - ( a + b + c + d)

        = a(a -1)  + b( b -1) + c( c – 1) + d( d – 1)

Vì a là  số nguyên dương nên a, (a – 1) là hai số tự nhiên liên tiếp

=> a(a-1) chia hết cho 2. Tương tự ta có b(b-1); c(c-1); d(d-1) đều chia hết cho 2

=> a(a -1)  + b( b -1) + c( c – 1) + d( d – 1) là số chẵn

Lại có a2 + c2 = b2 + d2=>  a2 + b2 + c2 + d2 = 2( b2 + d2) là số chẵn.

Do đó a + b + c + d là số chẵn mà a + b + c + d > 2 (Do a, b, c, d thuộc N*)

 a + b + c + d là hợp số.

 

a2

13 tháng 3 2015

Bạn Trần Thùy Dung ơi làm sai ùi cách 1 làm sai ùi:

đây là phép cộng không phải phép nhân

 

5 tháng 3 2020

\(a^2+b^2=c^2+d^2\)

\(\Rightarrow a^2+b^2+c^2+d^2=2\left(c^2+d^2\right)⋮2\)

Mà \(a^2+b^2+c^2+d^2-a-b-c-d⋮2\)

Nên a + b + c + d chia hết cho 2

5 tháng 3 2020

- Bạn ơii =) \(a^2-a=a\) ??? Sai sai à nha :))

1 tháng 8 2015

Ta có: 

\(\frac{a}{b}=\frac{14}{22}=\frac{14k}{22k}=>a=14k,b=22k=>M=a+b=14k+22k=36k\)

\(\frac{c}{d}=\frac{11}{13}=\frac{11m}{13m}=>c=11m,d=13m=>M=c+d=11m+13m=24m\)

\(\frac{e}{f}=\frac{13}{17}=\frac{13n}{17n}=>e=13n,f=17n=>M=e+f=13n+17n=30n\)

=>M=36k=24m=30n

=>M chia hết cho 36,24,30

Ta thấy: ƯCLN(36,24,30)=360

=>M chia hết cho 360

=>M=360h

mà M là số bé nhất có 4 chữ số=>h bé nhất

=>999<360h

=>2<h

mà h bé nhất

=>h=3

=>M=3.360=1080

Vậy M=1080

4 tháng 4 2016

$\frac{a}{b}=\frac{14}{22}=\frac{14k}{22k}=>a=14k,b=22k=>M=a+b=14k+22k=36k$

Sai đề không, nếu a=b=c=d=2 thì a,b,c,d đều là số nguyên tố mà.

18 tháng 2 2019

ko sai đề đâu bạn

16 tháng 5 2022

Xét : \(\left(a^2+b^2+c^2+d^2\right)-\left(a+b+c+d\right)\)

 

        \(=a\left(a-1\right)+b\left(b-1\right)+c\left(c-1\right)+d\left(d-1\right)\)

 

Vì \(a\) là  số nguyên dương nên \(a,\left(a-1\right)\) là hai số tự nhiên liên tiếp . 

 

\(\Rightarrow a\left(a-1\right)\) chia hết cho 2. Tương tự ta có : \(b\left(b-1\right);c\left(c-1\right);d\left(d-1\right)\) đều chia hết cho 2.

 

\(\Rightarrow a\left(a-1\right)+b\left(b-1\right)+c\left(c-1\right)+d\left(d-1\right)\) là số chẵn . 

 

Lại có : \(a^2+c^2=b^2+d^2\Rightarrow a^2+b^2+c^2+d^2=2\left(b^2+d^2\right)\) là số chẵn .

 

Do đó : \(a+b+c+d\) là số chẵn mà \(a+b+c+d>2\) (Do \(a,b,c,d\inℕ^∗\))

 

Vậy : \(a+b+c+d\) là hợp số .