K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 3 2017

\(-\) Chia 4 số a , b , c , d cho 3 có thể xảy ra 3 trường hợp về số dư là dư 0 , dư 1 , dư 2 .Do đó có ít nhất có 2 số có cùng số dư khi chia cho 3 .Do đó 1 hiệu trong tích trên chia hết cho 3 .Suy ra tích đó chia hết cho 3

\(-\)Chia 4 số a , b , c , d cho 4 , ta xét 4 số a , b , c , d chia hết cho 2 .Có thể xảy ra 2 trường hợp về số dư là dư 0 , dư 1 .Do đó tồn tại ít nhất 2 cặp số có cùng số dư khi chia cho 2 .Nên các hiệu trên ít nhất có 2 hiệu chia hết cho 2 .Do đó tích trên chia hết cho 4

Mà ƯCLN ( 3 , 4 ) = 1

Suy ra tích trên chia hết cho 12

22 tháng 7 2015

Trong 4 số a,b,c,d có ít nhất 2 số cùng số dư khi chia cho 3.
Trong 4 số a,b,c,d : nếu có 2 số cùng số dư khi chia cho 4 thì hiệu 2 số đó sẽ chia hết cho 4.

Nếu không thì 4 số dư theo thứ tự 0,1,2,3  trong 4 số a,b,c,d có 2 số chẵn, 2 số lẽ.

Hiệu của 2 số chẵn và 2 số lẽ trong 4 số đó chia hết cho 2

\(\Rightarrow\) Tích trên chia hết cho 3 và 4.

Mà ƯCLN(3; 4) = 1 nên (a-b).(a-c).(b-c).(b-d).(c-d) chia hết cho (3 . 4) = 12.

19 tháng 5 2018

chia hết cho 3 và 4

21 tháng 6 2015

Là:

a>b,c,d,e

b>c,d,e

c>d,e

d>e

đúng ko?

21 tháng 6 2015

Là:

a>b,c,d,e

b>c,d,e

c>d,e

d>e

đúng ko?

23 tháng 6 2015

Đặt P=(a-b)(a-c)(a-d)(a-e)(b-c)(b-d)(b-e)(c-d)(c-e)(d-e)

*Với 5 số a,b,c,d,e có ít nhất 2 số khi chia cho 3 có cùng số dư, không mất tính tổng quát giả sử hai số đó là a và b khi đó a-b chia hết cho 3. Bỏ đi b, xét 4 số còn lại. Trong 4 số này có ít nhất 2 số khi chia cho 3 có cùng số dư, không mất tính tổng quát giả sử 2 số đó là d và e khi đó d-e chia hết cho 3. =>P chia hết cho 9(1).

*Trong 5 số tự nhiên có ít nhất 3 số cùng tính chẵn lẻ.

-Nếu có cả 5 số cùng tính chẵn lẻ hiển nhiên tất cả các thừa số của P đều chia hết cho 2.

=>P chia hết cho

=>P chia hết cho

=>P chia hết cho 32

-Nếu trong 5 số có 4 số cùng tính chẵn lẻ, 4 số này tạo ra 6 thừa số của tích, mà mỗi tích đều chia hết cho 2.

=>P chia hết cho

=>P chia hết cho

=>P chia hết cho 32

-Nếu trong 5 số có 3 số cùng tính chẵn, không mất tính tổng quát giả sử đó là a,b,c.

Đặt a=2.m,b=2.n,c=2.p,d=2.q+1,e=2.l+1

=>P là tích của 16(m-n)(m-p)(n-p)(q-l) và 6 thừa số lẻ. Trong 3 số m,n,p có ít nhất 2 số cùng tính chẵn lẻ, chúng tạo ra 1 thừa số chia hết cho 2.

=>P chia hết cho 32

Tương tự với 3 số cùng lẻ và 2 số cùng chẵn thì P chia hết cho 32.

=> P chia hết cho 32(2).

Từ (1) và (2) ta thấy: P chia hết cho 9 và 32.

Mà (9,32)=1

=>P chia hết cho 9.32.

=>P chia hết cho 288

=> ĐPCM

23 tháng 6 2015

Đặt P=(a-b)(a-c)(a-d)(a-e)(b-c)(b-d)(b-e)(c-d)(c-e)(d-e)

*Với 5 số a,b,c,d,e có ít nhất 2 số khi chia cho 3 có cùng số dư, không mất tính tổng quát giả sử hai số đó là a và b khi đó a-b chia hết cho 3. Bỏ đi b, xét 4 số còn lại. Trong 4 số này có ít nhất 2 số khi chia cho 3 có cùng số dư, không mất tính tổng quát giả sử 2 số đó là d và e khi đó d-e chia hết cho 3. =>P chia hết cho 9(1).

*Trong 5 số tự nhiên có ít nhất 3 số cùng tính chẵn lẻ.

-Nếu có cả 5 số cùng tính chẵn lẻ hiển nhiên tất cả các thừa số của P đều chia hết cho 2.

=>P chia hết cho

=>P chia hết cho

=>P chia hết cho 32

-Nếu trong 5 số có 4 số cùng tính chẵn lẻ, 4 số này tạo ra 6 thừa số của tích, mà mỗi tích đều chia hết cho 2.

=>P chia hết cho

=>P chia hết cho

=>P chia hết cho 32

-Nếu trong 5 số có 3 số cùng tính chẵn, không mất tính tổng quát giả sử đó là a,b,c.

Đặt a=2.m,b=2.n,c=2.p,d=2.q+1,e=2.l+1

=>P là tích của 16(m-n)(m-p)(n-p)(q-l) và 6 thừa số lẻ. Trong 3 số m,n,p có ít nhất 2 số cùng tính chẵn lẻ, chúng tạo ra 1 thừa số chia hết cho 2.

=>P chia hết cho 32

Tương tự với 3 số cùng lẻ và 2 số cùng chẵn thì P chia hết cho 32.

=> P chia hết cho 32(2).

Từ (1) và (2) ta thấy: P chia hết cho 9 và 32.

Mà (9,32)=1

=>P chia hết cho 9.32.

=>P chia hết cho 288

=> ĐPCM

22 tháng 1 2020

Bài 1 :                                                         Bài giải

Ta có : 

\(A=7+7^2+7^3+...+7^8\)

\(A=\left(7+7^2+7^3+7^4\right)+\left(7^5+7^6+7^7+7^8\right)\)

\(A=7\left(1+7+7^2+7^3\right)+7^4\left(1+7+7^2+7^3\right)\)

\(A=7\cdot400+7^4\cdot400\)

\(A=7\cdot8\cdot50+7^4\cdot8\cdot50\)

\(A=50\left(7\cdot8+7^4\cdot8\right)\text{ }⋮\text{ }50\)

22 tháng 1 2020

Bài 1 :                                                         Bài giải

Ta có : 

\(A=7+7^2+7^3+...+7^8\)

\(A=\left(7+7^2+7^3+7^4\right)+\left(7^5+7^6+7^7+7^8\right)\)

\(A=7\left(1+7+7^2+7^3\right)+7^4\left(1+7+7^2+7^3\right)\)

\(A=7\cdot400+7^4\cdot400\)

\(A=7\cdot8\cdot50+7^4\cdot8\cdot50\)

\(A=50\left(7\cdot8+7^4\cdot8\right)\text{ }⋮\text{ }50\)

13 tháng 9 2015

+) Chia 4 số a; b; c;d cho 3 . Số dư có thể là 0; 1; 2

theo nguyên lí Dirichle: có ít nhất 2 trong 4 số a; b; c; d có cùng số dư khi chia cho 3

=> Hiệu hai số đó chia hết cho 3

=> Trong số tất cả các hiệu a-b; a - c; a - d; b - c; b - c; c - d có hiệu chia hết cho 3

=> tích A chia hết cho 3     (*)

+) Xét 3 số a; b; c . chia 3 số đó cho 2 . Số dư có thể là 0;1

Theo nguyên lí Dirichle: có ít nhất 2 trong số a; b; c có cùng số dư khi chia cho 2

=> Hiệu hai số đó chia hết cho 2

=> Trong hiệu a - b; a - c; b - c có hiệu chia hết cho 2

=> Tích (a - b)(a - c)(b - c) chia hết cho 2

+) Xét 3 số b; c; d . tương tự như trên => Có ít nhất 2 trong 3 số b; c;d có cùng số dư khi chia cho 2

- Nếu d cùng số dư với b hoặc c => (b - d) hoặc (c - d) chia hết cho 2 => tích (a - d)(b - d)(c - d) chia hết cho 2

- Nếu d không cùng số dư với cả b và c => b và c có cùng số dư 

* Nếu a cùng số dư với b; c => a - b; b - c chia hết cho 2 => Tích (a - b)(a - c)(b - c) chia hết cho 2 chia hết cho 4

* Nếu a không cùng số dư với b và c => a và d cùng số dư => a - d chia hết cho 2 => tích (a - d)(b - d)(c - d) chia hết cho 2 

=> Tích A luôn chia hết cho 4   (**)

Từ (*)(**) =>A  luôn chia hết cho 3.4 = 12

 

9 tháng 11 2020

lồn mẹ mi ạ làm sai to