K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
26 tháng 8 2021

Lời giải:

$a=2+\sqrt{5}$

$a-2=\sqrt{5}$

$a^2-4a+4=5\Leftrightarrow a^2-4a-1=0$

$p(a)=a^5-13a^4+7a^3-4a^2-6a$

$=a^3(a^2-4a-1)-9a^2(a^2-4a-1)-28a(a^2-4a-1)-125a^2-34a$

$=-125a^2-34a=-125(a^2-4a-1)-534a-125$

$=-534a-125=-534(2+\sqrt{5})-125=-1193-534\sqrt{5}$

 

NV
12 tháng 7 2021

Dựng tam giác ABC vuông tại A, trong đó \(AB=2\left(cm\right)\) và \(AC=3\left(cm\right)\)

Khi đó \(tan\widehat{ABC}=\dfrac{AC}{AB}=\dfrac{3}{2}\)

Vậy \(\widehat{ABC}\) chính là góc nhọn \(\alpha\) cần dựng

undefined

23 tháng 12 2018

Từ Từ đã nha!!

23 tháng 12 2018

\(\text{Ta có: }x=\sqrt{\frac{3-\sqrt{5}}{3+\sqrt{5}}}=\sqrt{\frac{\left(3-\sqrt{5}\right)^2}{\left(3+\sqrt{5}\right)\left(3-\sqrt{5}\right)}}=\frac{3-\sqrt{5}}{\sqrt{9-5}}=\frac{3-\sqrt{5}}{2}.\)

\(A=x^5-6x^4+12x^3-4x^2-13x+2020\)

\(=\left(x^5-3x^4+x^3\right)-\left(3x^4-9x^3+3x^2\right)+\left(2x^3-6x^2+2x\right)+\left(5x^2-15x+5\right)+2015\)

\(=x^3\left(x^2-3x+1\right)-3x^2\left(x^2-3x+1\right)+2x\left(x^2-3x+1\right)+5\left(x^2-3x+1\right)+2015\)

\(=\left(x^2-3x+1\right)\left(x^3-3x^2+2x+5\right)+2015\)

Thay x vào A ta có: 

\(A=\left[\left(\frac{3-\sqrt{5}}{2}\right)^2-3.\frac{3-\sqrt{5}}{2}+1\right]\left(.....\right)+2015\)

\(=\left(\frac{14-6\sqrt{5}}{4}-\frac{9-3\sqrt{5}}{2}+1\right)\left(....\right)+2015\)

\(=0\cdot\left(......\right)+2015=2015\)

Vậy.....

6 tháng 9 2020

\(3x^3-7x^2+17x-5=3x^3-x^2-6x^2+2x+15x-5\)

\(=x^2\left(3x-1\right)-2x\left(3x-1\right)+5\left(3x-1\right)\)

\(=\left(3x-1\right)\left(x^2-2x+5\right)\)

6 tháng 9 2020

\(x^3-x^2-4=x^3+x^2+2x-2x^2-2x-4\)

\(=x\left(x^2+x+2\right)=2\left(x^2+x+2\right)=\left(x-2\right)\left(x^2+x+2\right)\)