K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 5 2018

Giả sử 51 số đó đều âm và tích 4 số đó âm .

=> Mâu thuẫn với đề bài

=> Tồn tại ít nhất 1 số dương

Lấy số dương  đó ra , còn lại 50 số  , chia thành 12 nhóm.

có 4 số bất kì có tổng đều âm

Vậy   51 số đó đều dương.

28 tháng 5 2015

a) Tổng của 4 số là 1 số dương nên chắc chắn trong 4 số đó có 1 số dương

Bớt số dương đó ra => còn lại 12 số . Chia 12 số đó thành 3 nhóm, mỗi nhóm có 4 chữ số

=> Giá trị mỗi nhóm là số dương => Tổng 12 số đó dương

Cộng với số dương đã bớt ra => tổng của 13 số đã cho dương

28 tháng 5 2015

Nhìn vào cái này thì thấy cái khác quay, hoa mắt quá !!!

2 tháng 12 2018

Câu hỏi của Vu Kim Ngan - Toán lớp 7 - Học toán với OnlineMath

Em tham khảo nhé!

3 tháng 8 2017

Tìm trước khi đăng: Câu hỏi của Dương Dương

3 tháng 8 2017

uk mk bt r * cúi lạy bn * Nguyễn Phương Trâm

AH
Akai Haruma
Giáo viên
5 tháng 7 2017

Lời giải:

Xét các số \(a_1,a_2,....,a_{51}\)

Ta có \(a_1a_2....a_{51}=(a_1a_2a_3)(a_4a_5....a_{51})>0\)

Vì cứ tích $4$ số bất kỳ đều dương nên tích của \(48\) số từ \(a_4\rightarrow a_{51}\) dương, do đó \(a_1a_2a_3>0\)

Mà theo đk đề bài thì \(a_1a_2a_3a_j>0 \) \((j=\overline{4;51})\) nên \(a_4,a_5,...,a_{51}>0\)

Khi đó \(a_4a_5a_6>0\)\(a_4a_5a_6a_1,a_4a_5a_6a_2,a_4a_5a_6a_1>0\) nên \(a_1,a_2,a_3>0\)

Ta có đpcm.

5 tháng 7 2017

Cảm ơn.