K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 12 2017

Bạn xem hướng dẫn ở đây:

Câu hỏi của Nguyễn Quang Đức - Toán lớp 6 - Học toán với OnlineMath

7 tháng 10 2016

Ta có:

\(\begin{cases}a_2^2=a_1.a_3\\a_3^2=a_2.a_4\end{cases}\)\(\Rightarrow\begin{cases}\frac{a_2}{a_3}=\frac{a_1}{a_2}\\\frac{a_3}{a_4}=\frac{a_2}{a_3}\end{cases}\)\(\Rightarrow\frac{a_1}{a_2}=\frac{a_2}{a_3}=\frac{a_3}{a_4}\)

\(\Rightarrow\frac{a_1^3}{a_2^3}=\frac{a_2^3}{a_3^3}=\frac{a_3^3}{a_4^3}=\frac{a_1}{a_2}.\frac{a_2}{a_3}=\frac{a_3}{a_4}=\frac{a_1}{a_4}\left(1\right)\)

Áp dụng tính chất của dãy tỉ số = nhau ta có:

\(\frac{a_1^3}{a_2^3}=\frac{a_2^3}{a_3^3}=\frac{a_3^3}{a_4^3}=\frac{a_1^3+a_2^3+a_3^3}{a_2^3+a_3^3+a_4^3}\left(2\right)\)

Từ (1) và (2) \(\Rightarrow\frac{a_1^3+a_2^3+a_3^3}{a_2^3+a_3^3+a_4^3}=\frac{a_1}{a_4}\left(đpcm\right)\)

6 tháng 10 2016

vt rõ đề đi

22 tháng 9 2019

Ta có: \(a_2^2=a_1.a_3\)\(\Rightarrow\frac{a_1}{a_2}=\frac{a_2}{a_3}\) ;  \(a_3^2=a_2.a_4\)\(\Rightarrow\frac{a_2}{a_3}=\frac{a_3}{a_4}\)

\(\Rightarrow\frac{a_1}{a_2}=\frac{a_2}{a_3}=\frac{a_3}{a_4}\)\(\Rightarrow\frac{a_1^3}{a_2^3}=\frac{a_2^3}{a_3^3}=\frac{a_3^3}{a_4^3}=\frac{a_1^3+a_2^3+a_3^3}{a_2^3+a_3^3+a_4^3}\)(1)

Lại có: \(\frac{a_1^3}{a_2^3}=\frac{a_1}{a_2}.\frac{a_1}{a_2}.\frac{a_1}{a_2}=\frac{a_1}{a_2}.\frac{a_2}{a_3}.\frac{a_3}{a_4}=\frac{a_1}{a_4}\)(2)

Từ (1) và (2) \(\Rightarrow\frac{a_1^3+a_2^3+a_3^3}{a_2^3+a_3^3+a_4^3}=\frac{a_1}{a_4}\)

7 tháng 10 2017

Ta có:

\(\left\{{}\begin{matrix}a_2^2=a_1.a_3\\a^2_3=a_2.a_4\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}\dfrac{a_2}{a_3}=\dfrac{a_1}{a_2}\\\dfrac{a_3}{a_4}=\dfrac{a_2}{a_3}\end{matrix}\right.\Rightarrow\dfrac{a_1}{a_2}=\dfrac{a_2}{a_3}=\dfrac{a_3}{a_4}\)

\(\Rightarrow\dfrac{a^3_1}{a^3_2}=\dfrac{a^3_2}{a^3_3}=\dfrac{a^3_3}{a^3_4}=\dfrac{a_1}{a_2}=\dfrac{a_2}{a_3}=\dfrac{a_3}{a_4}=\dfrac{a_1}{a_4}\left(1\right)\)

Áp dụng tính chất dãy tỉ sô bằng nhau ta có:

\(\dfrac{a^3_1}{a^3_2}=\dfrac{a^3_2}{a^3_3}=\dfrac{a^3_3}{a^3_4}=\dfrac{a^3_1+a^3_2+a^3_3}{a^3_2+a^3_3+a^3_4}\left(2\right)\)

Từ \(\left(1\right)\)\(\left(2\right)\) \(\Rightarrow\dfrac{a^3_1+a^3_2+a^3_3}{a^3_2+a^3_3+a^3_4}=\dfrac{a_1}{a_4}\left(đpcm\right)\)

Chúc bạn học tốt!