Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(\overrightarrow{AB}=\left(1;3\right)\)
\(\overrightarrow{AC}=\left(2;6\right)\)
\(\overrightarrow{AD}=\left(2,5;7,5\right)\)
Vì \(\overrightarrow{AB}=\dfrac{1}{2}\overrightarrow{AC}\)
nên A,B,C thẳng hàng(1)
Vì \(\overrightarrow{AD}=\dfrac{5}{2}\overrightarrow{AB}\)
nên A,B,D thẳng hàng(2)
Từ (1) và (2) suy ra A,B,C,D thẳng hàng
b: \(\overrightarrow{AB}=\left(-5-x;6\right)\)
\(\overrightarrow{AC}=\left(7-x;-30\right)\)
Để A,B,C thẳng hàng thì \(\dfrac{-5-x}{7-x}=\dfrac{6}{-30}=\dfrac{-1}{5}\)
=>-5x-25=x-7
=>-6x=18
hay x=-3
a.
Gọi d là đường thẳng đi qua A, B. Do A; B đều thuộc d nên tọa độ A; B phải thỏa mãn pt d
\(\Leftrightarrow\left\{{}\begin{matrix}-5=a.0+b\\-1=-1.a+b\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=-4\\b=-5\end{matrix}\right.\)
b.
Câu b đề sai, 4 điểm này không hề thẳng hàng (thay tọa độ C, D vào pt d đều không thỏa mãn)
Lời giải:
a) Giả sử PT đi qua $B,C$ có dạng $y=ax+b$. Ta có:
\(\left\{\begin{matrix} y_B=ax_B+b\\ y_C=ax_C+b\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} 20=-5a+b\\ 16=7a+b\end{matrix}\right.\Rightarrow \left\{\begin{matrix} a=\frac{-1}{3}\\ b=\frac{55}{3}\end{matrix}\right.\)
Vậy PT có dạng $y=-\frac{1}{3}x+\frac{55}{3}$
b)
Để $A,B,C$ thẳng hàng thì $A\in$ PTĐT $BC$
$\Rightarrow y_A=\frac{-1}{3}x_A+\frac{55}{3}$
$\Leftrightarrow 14=\frac{-1}{3}x_A+\frac{55}{3}$
$\Rightarrow x_A=13$
Lời giải:
a. Gọi ptdt $(d)$ đi qua $A,B$ là $y=ax+b$
Ta có: \(\left\{\begin{matrix} y_A=ax_A+b\\ y_B=ax_B+b\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} 2=a+b\\ 1=a.0+b\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} b=1\\ a=1\end{matrix}\right.\)
Vậy ptđt $(d)$ là: $y=x+1$
b. Ta thấy: $y_C=-4=-5+1=x_C+1$ nên $C\in (d): y=x+1$
Tức là $C$ thuộc đt đi qua 2 điểm $A,B$
$\Rightarrow A,B,C$ thẳng hàng.
Người hay giúp bạn khác trả lời bài tập sẽ trở thành học sinh giỏi. Người hay hỏi bài thì không. Còn bạn thì sao?
bài 1
a) \(2\sqrt{27}-5\sqrt{75}+3\sqrt{108}=6\sqrt{3}-25\sqrt{3}+18\sqrt{3}=-\sqrt{3}\)
b)\(\sqrt{32}-12\sqrt{2}+2\sqrt{98}=4\sqrt{2}-12\sqrt{2}+14\sqrt{2}=6\sqrt{2}\)
c) \(\left(5\sqrt{20}-4\sqrt{45}+3\sqrt{80}\right):\sqrt{5}=\left(10\sqrt{5}-12\sqrt{5}+12\sqrt{5}\right):\sqrt{5}=10\sqrt{5}:\sqrt{5}=10\)