K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
8 tháng 7 2021

a.

Gọi d là đường thẳng đi qua A, B. Do A; B đều thuộc d nên tọa độ A; B phải thỏa mãn pt d

\(\Leftrightarrow\left\{{}\begin{matrix}-5=a.0+b\\-1=-1.a+b\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=-4\\b=-5\end{matrix}\right.\)

b.

Câu b đề sai, 4 điểm này không hề thẳng hàng (thay tọa độ C, D vào pt d đều không thỏa mãn)

NV
8 tháng 7 2021

a. Để d đi qua A; B

\(\Leftrightarrow\left\{{}\begin{matrix}5=2a+b\\-1=-a+b\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=2\\b=1\end{matrix}\right.\)

b. Theo câu a pt AB có dạng: \(y=2x+1\)

Thế tọa độ C vào pt AB ta được:

\(9=2.4+1\) (thỏa mãn)

Vậy C thuộc AB hay 3 điểm A;B;C thẳng hàng

c. Gọi M là tọa độ giao điểm của AB và Ox

\(\Rightarrow0=2x_M+1\Rightarrow x_M=-\dfrac{1}{2}\Rightarrow OM=\left|x_M\right|=\dfrac{1}{2}\)

Gọi N là giao điểm của AB và Oy

\(\Rightarrow y_N=2.0+1\Rightarrow y_N=1\Rightarrow ON=1\)

Gọi H là hình chiếu vuông góc của O lên AB \(\Rightarrow OH=d\left(O;AB\right)\)

Áp dụng hệ thức lượng:

\(\dfrac{1}{OH^2}=\dfrac{1}{ON^2}+\dfrac{1}{OM^2}=\dfrac{1}{1^2}+\dfrac{1}{\left(\dfrac{1}{2}\right)^2}=5\)

\(\Rightarrow OH=\dfrac{\sqrt{5}}{5}\)

AH
Akai Haruma
Giáo viên
15 tháng 9 2021

Lời giải:

a. Gọi ptdt $(d)$ đi qua $A,B$ là $y=ax+b$

Ta có: \(\left\{\begin{matrix} y_A=ax_A+b\\ y_B=ax_B+b\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} 2=a+b\\ 1=a.0+b\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} b=1\\ a=1\end{matrix}\right.\)

Vậy ptđt $(d)$ là: $y=x+1$

b. Ta thấy: $y_C=-4=-5+1=x_C+1$ nên $C\in (d): y=x+1$
Tức là $C$ thuộc đt đi qua 2 điểm $A,B$

$\Rightarrow A,B,C$ thẳng hàng.

a: Theo đề, ta có:

\(\left\{{}\begin{matrix}a+b=5\\2a+b=8\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=3\\b=2\end{matrix}\right.\)

b: 

1: Thay x=-1 và y=3 vào (d), ta được:

\(2\cdot\left(-1\right)-a+1=3\)

=>-a-1=3

=>-a=4

hay a=-4

25 tháng 11 2022

Bài 2:

a: (d): y=ax+b

Theo đề, ta có:

\(\left\{{}\begin{matrix}a\sqrt{2}+b=1\\a\cdot0+b=3\sqrt{2}+1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=3\sqrt{2}+1\\a=\dfrac{1-b}{\sqrt{2}}=\dfrac{1-3\sqrt{2}-1}{\sqrt{2}}=-3\end{matrix}\right.\)

b: Tọa độ giao của (d1) và (d2) là:

2/5x+1=-x+4 và y=-x+4

=>7/5x=3và y=-x+4

=>x=15/7 và y=-15/7+4=13/7

Vì (d) đi qua B(15/7;13/7) và C(1/2;-1/4)

nên ta có hệ:

15/7a+b=13/7 và 1/2a+b=-1/4

=>a=59/46; b=-41/46

9 tháng 5 2021

a, - Thay tọa độ hai điểm xA, xB vào (P) ta được : \(\left\{{}\begin{matrix}y_A=2\\y_B=\dfrac{1}{2}\end{matrix}\right.\)

=> Tọa độ 2 điểm A, B lần lượt là : \(\left(2;2\right),\left(-1;\dfrac{1}{2}\right)\) .

b, - Gọi phương trình đường thẳng AB có dạng : y = ax + b .

- Thay tọa độ A, B vào phương trình ta được hệ : \(\left\{{}\begin{matrix}2a+b=2\\-a+b=\dfrac{1}{2}\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}a=\dfrac{1}{2}\\b=1\end{matrix}\right.\)

- Thay lại a, b vào phương trình ta được : \(y=\dfrac{1}{2}x+1\)

Vậy ...