Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giả sử trong 2000 số nguyên dương đã cho không có 2 số nào bằng nhau
\(a_1>a_2>a_3>...>a_{2000}\ge1\)
Khi đó ta có :
\(\frac{1}{a_1}+\frac{1}{a_2}+\frac{1}{a_3}+...+\frac{1}{a_{2000}}\le1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2000}=8,1783...< 12\)
( Mâu thuẫn giả thiết )
Vậy trong 2000 số nguyên dương đã cho có ít nhất 2 số bằng nhau.
a2 = 82
b2 = 172
c2 = 52
d2 = 32
e2 = 82
*Ý kiến riêng mong đc k
*Nếu bạn nghĩ mik làm sai thì bạn có thể tính lại
100% đúng nha bạn
Mik đã đi hỏi cô và cô bảo đúng :)
cho mình hỏi tại sao lại như thế và dựa vào căn cứ gì mà bạn viết như vậy
câu 1: -799999
câu 2: cần 13245 chữ số
câu 3: 2014 chữ số
câu 4: -617
câu 6: 2014
câu 7: 16
câu 10: 9
Còn mấy câu nữa mình không biết. bạn tích đúng cho mình nha
Giả sử trong 2016 số này khác nhau từng đôi 1 ta có
\(\frac{1}{a_1}+\frac{1}{a_2}+...+\frac{1}{a_{2016}}\le\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2016}\)
\(< 1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{7}+\frac{1}{8}+\frac{1}{8}+...+\frac{1}{8}\)(2009 số \(\frac{1}{8}\))
\(=1+\frac{1}{2}+...+\frac{1}{7}+\frac{2009}{8}\)
\(=\frac{363}{140}+\frac{2009}{8}\approx253,72< 300\)
Vậy trong 2016 số đã cho tồn tại ít nhất 2 số bằng nhau
Có vẻ thiếu cái gì đó. khi có hai số bằng nhau rồi. g/s là a2015=a2016
Liệu P trình : 1/a1+...+1/a2015=B có tồn tại Nghiệm nguyên
Đề ở đâu mà khó thế??!!!