K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 7 2020

a= 82

b2 = 172

c2 = 52

d= 32

e2 = 82

*Ý kiến riêng mong đc k

*Nếu bạn nghĩ mik làm sai thì bạn có thể tính lại

100% đúng nha bạn

Mik đã đi hỏi cô và cô bảo đúng :)

10 tháng 7 2020

cho mình hỏi tại sao lại như thế và dựa vào căn cứ gì mà bạn viết như vậy

12 tháng 6 2021

Ta có :

\(1=1\)

\(\frac{1}{2^2}< \frac{1}{1\times2}=1-\frac{1}{2}\)

\(\frac{1}{3^2}< \frac{1}{2\times3}=\frac{1}{2}-\frac{1}{3}\)

\(\frac{1}{4^2}< \frac{1}{3\times4}=\frac{1}{3}-\frac{1}{4}\)

........................................................

\(\frac{1}{n^2}< \frac{1}{\left(n-1\right)n}=\frac{1}{n-1}-\frac{1}{n}\)

Cộng tất cả lại ta có :

\(1+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+.....+\frac{1}{n^2}=2-\frac{1}{n}\)với \(\forall n\)

Nếu chọn ra 5 số a,b,c,d,e khác nhau bất kỳ  trong các số từ 1 đến n thì 

\(\Rightarrow\)\(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{1}{d^2}+\frac{1}{e^2}< 2\)

Mà theo giả thiết :

\(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{1}{d^2}+\frac{1}{e^2}=2\)

⇒ có ít nhất 2 trong 5 số a;b;c;d;e bằng nhau

12 tháng 6 2021

giúp mình câu này với!!!

24 tháng 4 2016

Làm sao để ghi dấu phần vậy bạn

10 tháng 1 2017

Giả sử trong 2016 số này khác nhau từng đôi 1 ta có

\(\frac{1}{a_1}+\frac{1}{a_2}+...+\frac{1}{a_{2016}}\le\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2016}\)

\(< 1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{7}+\frac{1}{8}+\frac{1}{8}+...+\frac{1}{8}\)(2009 số \(\frac{1}{8}\))

\(=1+\frac{1}{2}+...+\frac{1}{7}+\frac{2009}{8}\)

\(=\frac{363}{140}+\frac{2009}{8}\approx253,72< 300\)

Vậy trong 2016 số đã cho tồn tại ít nhất 2 số bằng nhau

10 tháng 1 2017

Có vẻ thiếu cái gì đó. khi có hai số bằng nhau rồi. g/s là a2015=a2016

Liệu P trình : 1/a1+...+1/a2015=B có tồn tại Nghiệm nguyên

2 tháng 8 2020

Giả sử trong 2000 số nguyên dương đã cho không có 2 số nào bằng nhau

\(a_1>a_2>a_3>...>a_{2000}\ge1\)

Khi đó ta có :

\(\frac{1}{a_1}+\frac{1}{a_2}+\frac{1}{a_3}+...+\frac{1}{a_{2000}}\le1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2000}=8,1783...< 12\)

( Mâu thuẫn giả thiết )

Vậy trong 2000 số nguyên dương đã cho có ít nhất 2 số bằng nhau.

13 tháng 4 2017

Câu 2/ Gọi ước chung lớn nhất của a,c là q thì ta có:

a = qa1; c = qc1 (a1, c1 nguyên tố cùng nhau).

Thay vào điều kiện ta được:

 qa1b = qc1d

\(\Leftrightarrow\)a1b = c1d

\(\Rightarrow\)  d\(⋮\)a1

\(\Rightarrow\)d = d1a1

Thế ngược lại ta được: b = d1c1

Từ đây ta có:

A = an + bn + cn + dn = (qa1)n + (qc1)n + (d1a1)n + (d1c1)n

= (a​1 n + c1 n)(q n + d1 n)

Vậy A là hợp số

13 tháng 4 2017

\(D=\frac{4}{1^2}+\frac{4}{3^2}+....+\frac{4}{2015^2}\)

\(D=4+2.\left(\frac{2}{3.3}+\frac{2}{5.5}+....+\frac{2}{2015.2015}\right)\)

\(D< 4+2.\left(\frac{2}{1.3}+\frac{2}{3.5}+.....+\frac{2}{2013.2015}\right)\)

\(D< 4+2.\left(1-\frac{1}{2015}\right)\)

\(D< 6\)

mink chỉ làm được vậy thôi bạn ạ, sorry