K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 7 2017

Bài này của lớp 6 ạ ! 

12 tháng 10 2018

a) => n thuộc Ư(12)

=> n thuộc ( 1; 2; 3;4 ;6; 12)

b) => x+1+14 chia hết cho x+1

Vì x+1 chia hết cho x+1 nên 14 chia hết cho x+1

=> x+1 thuộc Ư(14)

=> x+1 thuộc ( 1,2,7,14)

Ta có bảng 

x+112714
x01613

Vậy x thuộc ( 0,1,6,13)

c) 

n chia hết cho n nên 5 cũng chia hết cho n

rồi bạn làm như bài b

d) 

n+3 +4 chia hết cho n+3

Vì n+3 chia hết cho n+3 nên 4 chia hết cho n+3

bạn tiếp tục làm như bài trên

SORRY BẠN NHA MẤY BÀI DƯỚI MÌNH CHƯA HỌC

12 tháng 12 2016

Bài 1:

Ta có: (3a+1)(b-5)=21=1.21=21.1=3.7=7.3. Kẻ bảng:

+/ 3a+1=1=>a=0

    b-5=21=>b=26

+/ 3a+1=21 => a=20/3 (Loại)

+/ 3a+1=3 => a=2/3 (Loại)

+/ 3a+1=7 => a=2

    b-5=3 => b=8

ĐS: a,b ={(0, 26); (2, 8)}

Bài 2:

Ta có: 3n+4 chia hết cho 2n-1 => 2(3n+4) chia hết cho 2n-1

2(3n+4)=6n+8=6n-3+11=3(2n-1)+11

Vậy để 3n+4 chia hết cho 2n-1 thì 11 phải chia hết cho 2n-1

=> Có 2 trường hợp:

+/ 2n-1=1 => n=1

+/ 2n-1=11 => n=6

ĐS: n={1;6}

Ta có :

A = n . (1 + 4) vậy A là số lẻ vì cứ cách 4 đến 5 là số lẻ

B = 2n . (1 + 5) vậy B là số chẵn vì cách 2 đến 3 là số chẵn

đấp án : xong nha bạn 

8 tháng 7 2018

A=số lẻ x số chẵn; B=số lẻ x số lẻ (vì có +1 và +5)

-> A là số chẵn, B là số lẻ

1 tháng 6 2017

Lop 5 mà học dạng này rồi à?? 

1 tháng 6 2017

toán chứng minh chưa có học nên chưa có biết

23 tháng 1 2017

a) n = 0 hoặc n= 2

n = -3 hoặc n=-1

18 tháng 8 2015

2n + 1 chia hết n - 5

<=> 2n - 10 +  11 chia hết cho n - 5

<=> 11 chia hết cho n - 5 mà n là số tự nhiên

<=> n - 5 thuộc {-11;-1;1;11}

n - 5 = -11 ; n = -6 (loại)

n -5 = -1 ; n = 4 (chọn)

n - 5 = 1 ; n = 6 (chọn)

n - 5 = 11 ; n = 16 (chọn)

Vậy n \(\in\){4;6;16}

 

18 tháng 8 2015

Ta có:

2n+1 chia n-5 dư 11

Để 2n+1 chia hết cho n-5 thì n-5 thuộc Ư(11)

Ta có bảng:

2n+1111-11-1
n50-6(loại-1(loại)

Vậy n={0;5}

Sửa đề: Chứng minh rằng với mọi số tự nhiên n; ta có :
A = 2 * n + 11111....1 chia hết cho 3

                 ( n chữ số 1 )

             Giải:

Nếu n chia hết cho 3 thì tổng các chữ số của 11111...1 ( n chữ số 1 ) chia hết cho 3 và 2 * n chia hết cho 3 nên A chia hết cho 3.

Nếu n chia 3 dư 1 thì 2 * n chia 3 dư 2 ( (1 + 1) mod 3 ), mà tổng các chữ số của 11111...1 ( n chữ số 1 ) khi đó dư 1 khiến A chia hết cho 3 ( (2 + 1) mod 3 )

Nếu n chia 3 dư 2 thì 2 * n lại dư 1 ( (2 + 2) mod 3 ), mà tổng các chữ số của 11111...1 ( n chữ số 1 ) lại dư 1 khiến a chia hết cho 3 ( (1 + 2) mod 3 )

Vậy bất kể n là số tự nhiên nào, thì A luôn chia hết cho 3 (đpcm)

15 tháng 8 2020

+ Với n=1 thì A=2x1+1=3 chia hết cho 3

+ Với n=2 thì A=2x2+11=15 chia hết cho 3

+ Với n=3 thì A=2x3+111=117 chia hết cho 3

+ Với n>3 thì

# Nếu n chia hết cho 3 thì 2n chia hết cho 3 và tổng các chữ số của 111..11 là n cũng chia hết cho 3 nên A chia hết cho 3

# Nếu n chia 3 dư 1 thì n-1 chia hết cho 3 => 2x(n-1)=2xn-2 chia hết cho 3

=> A=2xn-2+11111....11+2 (n chữ số 1) khi đó 111...11+2 = 1111..13 (n-1 chữ số 1) => tổng các chữ số của số 111...13 là

(n-1)x1+3=n+2 mà n chia 3 dư 1 nên n+2 chia hết cho 3 => 1111..13 chia hết cho 3 nên A chia hết cho 3

# Nếu n chia 3 dư 2 thì n-2 chia hết cho 3 => 2x(n-2)=2xn-4 chia hết cho 3

=> A=2xn-4+11111..11+4 (n chữ số 1) khi đó 1111..11+4=1111..15 (n-1 chữ số 1) => tổng các chữ số của số 111..15 là

(n-1)x1+5=n+4 do n chia 3 dư 2 nên n+4 chia hết cho 3 => 1111..15 chia hết cho 3 nên A chia hết cho 3

Vậy Với mọi số TN n ta đều có 2xn+1111..111 (n chữ số 1) đều chia hết cho 3