Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b ) 3n + 2 chia hết cho n - 1
=> 3n - 3 + 5 chia hết cho n - 1
=> 3 ( n - 1 ) + 5 chia hết cho n - 1
Mà : 3 ( n - 1 ) chia hết cho n - 1
=> 5 chia hết chco n - 1
=> n - 1 = 1 hoặc n - 1 = 5
+ Nếu n - 1 = 1 => n = 2
+ Nếu n - 1 = 5 => n = 6
Vậy : n = 2 hoặc n = 6
2n + 1 chia hết n - 5
<=> 2n - 10 + 11 chia hết cho n - 5
<=> 11 chia hết cho n - 5 mà n là số tự nhiên
<=> n - 5 thuộc {-11;-1;1;11}
n - 5 = -11 ; n = -6 (loại)
n -5 = -1 ; n = 4 (chọn)
n - 5 = 1 ; n = 6 (chọn)
n - 5 = 11 ; n = 16 (chọn)
Vậy n \(\in\){4;6;16}
Ta có:
2n+1 chia n-5 dư 11
Để 2n+1 chia hết cho n-5 thì n-5 thuộc Ư(11)
Ta có bảng:
2n+1 | 11 | 1 | -11 | -1 |
n | 5 | 0 | -6(loại | -1(loại) |
Vậy n={0;5}
Do 2n+1 là số chính phương lẻ nên 2n+1 chia 8 dư 1,vậy n là số chẵn.
Vì 3n+1 là số chính phương lẻ nên 3n+1 chia 8 dư 1
⟹3n⋮8
⟺n⋮8(1)
Do 2n+1 và 3n+1 đều là số chính phương lẻ có tận cùng là 1;5;9.do đó khi chia cho 5 thì có số dư là 1;0;4
Mà (2n+1)+(3n+1)=5n+2 ,do đo 2n+1 và 3n+1 khi cho cho 5 đều dư 1
⟹n⋮5(2)
Từ (1) và (2)⟹n⋮40
Vậy n=40k thì ... Do 2n+1 là số chính phương lẻ nên 2n+1 chia 8 dư 1,vậy n là số chẵn.
Vì 3n+1 là số chính phương lẻ nên 3n+1 chia 8 dư 1
⟹3n⋮8
⟺n⋮8(1)
Do 2n+1 và 3n+1 đều là số chính phương lẻ có tận cùng là 1;5;9.do đó khi chia cho 5 thì có số dư là 1;0;4
Mà (2n+1)+(3n+1)=5n+2 ,do đo 2n+1 và 3n+1 khi cho cho 5 đều dư 1
⟹n⋮5(2)
Từ (1) và (2)⟹n⋮40
Vậy n=40k
3n + 6 chia hết cho n
3n chia hết cho n => 6 chia hết cho n
=> n = 1;2;3;6
a) Tìm số tự nhiên nhỏ nhất sao cho khi chia số đó cho 3,4,5 đều dư 1và chia cho 7 thì không dư
Gọi số đó là x
Ta có: x - 1 ∈ BC(3; 4; 5) = {0; 60; 120; 180; 240; 300; ...}
=> x ∈ {1; 61; 121; 181; 241; 301 ...}
Vì x chia hết cho 7 => x = 301
b) Tìm số tự nhiên a nhỏ nhất sao cho a chia cho 2 dư 1,chia cho 5 dư 1,chia cho 7 dư 3,chia hết cho 9
Ta có: a chia 2 dư 1
a chia 5 dư 1
a chia 7 dư 3
a chia hết cho 9
=> a chia hết cho 3; 6; 9; 10
Ta có: 2 + 1 = 3
6 + 1 = 6
7 + 3 = 10
=> a nhỏ nhất
=> a thuộc BCNN(3; 6; 9; 10)
Ta có: 3 = 3
6 = 2 . 3
9 = 3^2
10 = 2 . 5
=> BCNN(3; 6; 9; 10) = 3^2 . 2 . 5 = 90
=> a = 90
Bài 1 nếu chia hết cho 3 thì 7a5b1 thì \(\frac{7a5b1}{3}=\frac{\left(7+5+1+a+b\right)}{3}=\frac{13+\left(a+b\right)}{3}\)
\(\Rightarrow a+b=2;5;8\)
\(a+b=2\left(loại\right)\)(hiệu k thể > hơn tổng)
\(a+b=5\left(loại\right)\)(vì để tìm \(\frac{b:\left(5-4\right)}{2}=0,5\)mà a và b là số tự nhiên =>a+b=8
\(a=\frac{8+4}{2}=6\)\(b=6-4=2\)
Vậy số cần tìm là 76521
Vì B chia hết cho 2 và 5 nên B chia hết cho 10
=>b=0
Vì B chia hết cho 3 =>5+7+a+2+0 chia hết cho 3
=>14+a chia hết cho 3
Mà B ko chia hết cho 9 => 14+a ko chia hết cho 9
=>a=1 hoặc a=7
Vậy có 2 số thỏa mãn 57120 và 57720
Do số cần tìm chia hết cho 2 và 5 nên b = 0
Để số cần tìm chia hết cho 3 mà không chia hết cho 9 thì tổng các chữ số của nó chia hết cho 3 mà không chia hết cho 9
5 + 7 + a + 2 + 0 chia hết cho 3
a = 1 hoặc a = 7
Vậy a = 1 hoặc 7; b = 0
Bài 1:
Ta có: (3a+1)(b-5)=21=1.21=21.1=3.7=7.3. Kẻ bảng:
+/ 3a+1=1=>a=0
b-5=21=>b=26
+/ 3a+1=21 => a=20/3 (Loại)
+/ 3a+1=3 => a=2/3 (Loại)
+/ 3a+1=7 => a=2
b-5=3 => b=8
ĐS: a,b ={(0, 26); (2, 8)}
Bài 2:
Ta có: 3n+4 chia hết cho 2n-1 => 2(3n+4) chia hết cho 2n-1
2(3n+4)=6n+8=6n-3+11=3(2n-1)+11
Vậy để 3n+4 chia hết cho 2n-1 thì 11 phải chia hết cho 2n-1
=> Có 2 trường hợp:
+/ 2n-1=1 => n=1
+/ 2n-1=11 => n=6
ĐS: n={1;6}