K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 8 2021

bài 7

A=\(\dfrac{x+2}{\sqrt{x^3}-1}+\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\left(x+\sqrt{x}+1\right)}+\dfrac{-x-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)

A=\(\dfrac{x+2+x-1-x-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)

A=\(\dfrac{x-\sqrt{x}}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)=\(\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+x+1\right)}\)

A=\(\dfrac{\sqrt{x}}{x+\sqrt{x}+1}\)

bài 8

P=\(\left[\dfrac{\sqrt{x}+2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\dfrac{\sqrt{x}-2}{\left(\sqrt{x}-1\right)^2}\right].\dfrac{\left(x-1\right)^2}{4x}\)

P=\(\dfrac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)-\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)^2\left(\sqrt{x}+1\right)}.\dfrac{\left(x-1\right)^2}{4x}\)

P=\(\dfrac{2\sqrt{x}}{\left(x-1\right)\left(\sqrt{x}-1\right)}.\dfrac{\left(x-1\right)^2}{4x}\)=\(\dfrac{x-1}{2\sqrt{x}\left(\sqrt{x}-1\right)}\)

P=\(\dfrac{\sqrt{x}+1}{2\sqrt{x}}\)

bài 9

P=\(\left[\dfrac{2\sqrt{xy}}{\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)}-\dfrac{\sqrt{x}+\sqrt{y}}{2\left(\sqrt{x}-\sqrt{y}\right)}\right].\dfrac{2\sqrt{x}}{\sqrt{x}-\sqrt{y}}\)

P=\(\dfrac{4\sqrt{xy}-\left(\sqrt{x}+\sqrt{y}\right)^2}{2\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)}.\dfrac{2\sqrt{x}}{\sqrt{x}-\sqrt{y}}\)

P=\(\dfrac{2\sqrt{xy}-x-y}{\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)}.\dfrac{\sqrt{x}}{\sqrt{x}-\sqrt{y}}\)

P=\(\dfrac{-\left(\sqrt{x}-\sqrt{y}\right)^2}{\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)}.\dfrac{\sqrt{x}}{\sqrt{x}-\sqrt{y}}\)

P=\(\dfrac{-\sqrt{x}}{\sqrt{x}+\sqrt{y}}\)

bài 10

P=\(\left[\dfrac{1}{\sqrt{x}+2}-\dfrac{2}{\left(\sqrt{x}+2\right)^2}\right]:\left[\dfrac{2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}-\dfrac{1}{\sqrt{x}-2}\right]\)

P=\(\dfrac{\sqrt{x}+2-2}{\left(\sqrt{x}+2\right)^2}:\dfrac{2-\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)

P=\(\dfrac{\sqrt{x}}{\left(\sqrt{x}+2\right)^2}.\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}{-\sqrt{x}}\)=\(\dfrac{-\left(\sqrt{x}-2\right)}{\sqrt{x}+2}\)

 

17 tháng 8 2021

cảm ơn bạn nha

NV
22 tháng 2 2021

Câu 4:

D và F cùng nhìn AC dưới 1 góc vuông nên tứ giác ACDF nội tiếp

\(\Rightarrow\widehat{ADF}=\widehat{ACF}\) (cùng chắn AF)

Tương tự, ABDE nội tiếp \(\Rightarrow\widehat{ABE}=\widehat{ADE}\) (cùng chắn AE)

Lại có \(\widehat{ABE}=\widehat{ACF}\) (cùng phụ góc \(\widehat{A}\))

\(\Rightarrow\widehat{ADE}=\widehat{ADF}\) hay AD là phân giác góc \(\widehat{FDE}\)

./

Hoàn toàn tương tự, ta cũng có CF là phân giác \(\widehat{DFE}\Rightarrow\widehat{BFD}=\widehat{AFE}\)

Mà \(\widehat{AFE}=\widehat{BFK}\Rightarrow\widehat{BFK}=\widehat{BFD}\)

\(\Rightarrow\dfrac{BK}{BD}=\dfrac{FK}{FD}\) theo định lý phân giác

Đồng thời \(\dfrac{CK}{CD}=\dfrac{FK}{FD}\) (CF là phân giác ngoài góc \(\widehat{DFK}\))

\(\Rightarrow\dfrac{BK}{BD}=\dfrac{CK}{CD}\Rightarrow\dfrac{BK}{CK}=\dfrac{BD}{CD}\)

Qua B kẻ đường thẳng song song AC cắt AK và AD tại P và Q

Theo Talet: \(\dfrac{BK}{CK}=\dfrac{BP}{AC}\) đồng thời \(\dfrac{BD}{DC}=\dfrac{BQ}{AC}\)

\(\Rightarrow\dfrac{BP}{AC}=\dfrac{BQ}{AC}\Rightarrow BP=BQ\)

Mặt khác BP song song MF (cùng song song AC)

\(\Rightarrow\dfrac{MF}{BP}=\dfrac{AF}{AB}\) ; \(\dfrac{NF}{BQ}=\dfrac{AF}{AB}\) (Talet)

\(\Rightarrow\dfrac{MF}{BP}=\dfrac{NF}{BQ}\Rightarrow MF=NF\)

NV
22 tháng 2 2021

Hình vẽ câu 4:

undefined

25 tháng 9 2021

gấp lắm ạ. Mọi người giúp mình với ạ. Tối nay mình cần rồi.

14 tháng 4 2022

\(\left\{{}\begin{matrix}x_1+x_2=2\\x_1x_2=-1\end{matrix}\right.\)

8: \(=\dfrac{x_1^2+x_2^2}{\left(x_1\cdot x_2\right)^2}=\dfrac{2}{1}=2\)

9: \(=\left(x_1+x_2\right)^3-3x_1x_2\left(x_1+x_2\right)=2^3-3\cdot\left(-1\right)\cdot2=8+6=14\)

16: \(=\sqrt{\left(x_1+x_2\right)^2-4x_1x_2}=\sqrt{2^2-4\cdot\left(-1\right)}=\sqrt{4+4}=2\sqrt{2}\)

1) Vì x=25 thỏa mãn ĐKXĐ nên Thay x=25 vào biểu thức \(A=\dfrac{\sqrt{x}-2}{x+1}\), ta được:

\(A=\dfrac{\sqrt{25}-2}{25+1}=\dfrac{5-2}{25+1}=\dfrac{3}{26}\)

Vậy: Khi x=25 thì \(A=\dfrac{3}{26}\)

2) Ta có: \(B=\dfrac{\sqrt{x}-3}{\sqrt{x}+1}+\dfrac{2x+8\sqrt{x}-6}{x-\sqrt{x}-2}\)

\(=\dfrac{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}+\dfrac{2x+8\sqrt{x}-6}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}\)

\(=\dfrac{x-5\sqrt{x}+6+2x+8\sqrt{x}-6}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}\)

\(=\dfrac{3x+3\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}\)

\(=\dfrac{3\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}\)

\(=\dfrac{3\sqrt{x}}{\sqrt{x}-2}\)

11 tháng 5 2021

câu 3 chứ

16 tháng 7 2021
ext-9bosssssssssssssssss

III:

1) \(x-y=\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)\)

2) \(x-1=\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)\)

4) \(a-2\sqrt{a}+1=\left(\sqrt{a}-1\right)^2\)

5) \(2x-\sqrt{x}-3=\left(\sqrt{x}+1\right)\left(2\sqrt{x}-3\right)\)

6) \(6a^2-5a\sqrt{b}-b=\left(a-\sqrt{b}\right)\left(6a+\sqrt{b}\right)\)

7) \(x-2\sqrt{x-1}-y^2=\left(\sqrt{x-1}-1\right)^2-y^2=\left(\sqrt{x-1}-1-y\right)\left(\sqrt{x-1}-1+y\right)\)

II:

2.8) ĐKXĐ: \(x\ge2\)

2.9: ĐKXĐ: \(\left[{}\begin{matrix}x< \dfrac{1}{2}\\\dfrac{1}{2}< x\le1\end{matrix}\right.\)

2.10: ĐKXĐ: \(x\ne0\)

2.11: ĐKXĐ: \(\left[{}\begin{matrix}x\le-5\\x\ge3\end{matrix}\right.\)

4 tháng 1 2022

\(7,\\ a,ĐK:a>0;a\ne1\\ b,K=\dfrac{a-1}{\sqrt{a}\left(\sqrt{a}-1\right)}:\dfrac{\sqrt{a}-1+2}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}\\ K=\dfrac{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}{\sqrt{a}\left(\sqrt{a}-1\right)}\cdot\dfrac{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}{\sqrt{a}+1}=\dfrac{a-1}{\sqrt{a}}\\ c,a=3+2\sqrt{2}=\left(\sqrt{2}+1\right)^2\\ \Leftrightarrow K=\dfrac{3+2\sqrt{2}-1}{\sqrt{2}+1}=\dfrac{2+2\sqrt{2}}{\sqrt{2}+1}=\dfrac{2\left(\sqrt{2}+1\right)}{\sqrt{2}+1}=2\\ d,K< 0\Leftrightarrow a-1< 0\left(\sqrt{a}>0\right)\Leftrightarrow0< a< 1\)