K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 12 2021

\(a,m=0\Leftrightarrow y=3x+2\)

Vì \(3>0\) nên hàm đồng biến

\(b,\text{Thay }x=-1;y=3\\ \Leftrightarrow-m-3+2=3\Leftrightarrow m=-4\\ c,\text{PT giao Ox: }y=0\Leftrightarrow x=-\dfrac{2}{m+3}\Leftrightarrow A\left(-\dfrac{2}{m+3};0\right)\Leftrightarrow OA=\dfrac{2}{\left|m+3\right|}\\ \text{PT giao Oy: }x=0\Leftrightarrow y=2\Leftrightarrow B\left(0;2\right)\Leftrightarrow OB=2\\ \text{Ta có }S_{OAB}=4\\ \Leftrightarrow\dfrac{1}{2}OA\cdot OB=4\Leftrightarrow\dfrac{2}{\left|m+3\right|}\cdot2=8\\ \Leftrightarrow\dfrac{4}{\left|m+3\right|}=8\\ \Leftrightarrow\left|m+3\right|=\dfrac{1}{2}\Leftrightarrow\left[{}\begin{matrix}m=-\dfrac{5}{2}\\m=-\dfrac{7}{2}\end{matrix}\right.\)

điểm kìa anh ;-;

23 tháng 3 2022

mặc dù h này chắc ko có ai lm đề ktra giữa kì nma sao mình thấy đầu tờ giấy nó lại có chữ đấy á

23 tháng 3 2022

Dạ đề thi thử c 

27 tháng 10 2021

a: \(P=\left(\dfrac{2}{\sqrt{x}-1}+\dfrac{\sqrt{x}}{\sqrt{x}+1}\right)\cdot\dfrac{\sqrt{x}}{x+\sqrt{x}+2}\)

\(=\dfrac{2\sqrt{x}+2+x-\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\cdot\dfrac{\sqrt{x}}{x+\sqrt{x}+2}\)

\(=\dfrac{\sqrt{x}}{x-1}\)

27 tháng 10 2021

\(P=\left(\dfrac{2}{\sqrt{x}-1}+\dfrac{\sqrt{x}}{\sqrt{x}+1}\right).\dfrac{\sqrt{x}}{x+\sqrt{x}+2}\)

\(\Rightarrow P=\dfrac{2\left(\sqrt{x}+1\right)+\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}.\dfrac{\sqrt{x}}{x+\sqrt{x}+2}\)

\(\Rightarrow P=\dfrac{x+\sqrt{x}+2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}.\dfrac{\sqrt{x}}{x+\sqrt{x}+2}\)

\(\Rightarrow P=\dfrac{\sqrt{x}}{x-1}\)

\(\Rightarrow P=\dfrac{\sqrt{3+2\sqrt{2}}}{3+2\sqrt{2}-1}\)

\(\Rightarrow P=\dfrac{\sqrt{\left(\sqrt{2}+1\right)^2}}{2+2\sqrt{2}}\)

\(\Rightarrow P=\dfrac{\sqrt{2}+1}{2\left(\sqrt{2}+1\right)}\)

\(\Rightarrow P=\dfrac{1}{2}\)

 

8 tháng 11 2021

c, Áp dụng HTL ta được \(\left\{{}\begin{matrix}BI\cdot BM=AB^2\\BH\cdot BC=AB^2\end{matrix}\right.\Rightarrow BI\cdot BM=BH\cdot BC\)

\(\Rightarrow\dfrac{BI}{BH}=\dfrac{BC}{BM}\)

c: Xét ΔABM vuông tại A có AI là đường cao

nên \(BI\cdot BM=BA^2\left(1\right)\)

Xét ΔABC vuông tại A có AH là đường cao

nên \(BH\cdot BC=BA^2\left(2\right)\)

Từ (1) và (2) suy ra \(BI\cdot BM=BH\cdot BC\)

hay \(\dfrac{BI}{BH}=\dfrac{BC}{BM}\)

a: Theo đề, ta có hệ phương trình:

\(\left\{{}\begin{matrix}-a+b=-20\\3a+b=8\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=7\\b=8-3a=8-3\cdot7=-13\end{matrix}\right.\)