Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
n(A)=1
\(n\left(\Omega\right)=C^1_{10}\cdot C^1_9=90\)
=>Xác suất đúng là 1/90
Chọn C
Có 2 bộ số {a;b;c} có tổng các chữ số bằng 5 là: {0;1;4}, {0;2;3}, mỗi bộ số có 3! hoán vị nên có tất cả 12 khả năng.
Do đó xác suất để người đó bấm máy một lần đúng số cần gọi là 1 12 .
Tham khảo:
Số phần tử của không gian mẫu là . Để người đó gọi đúng số điện thoại mà không phải thử quá hai lần ta có 2 trường hợp:
TH1: Người đó gọi đúng ở lần thứ nhất.
TH2: Người đó gọi đúng ở lần thứ hai. Gọi A1 người đó gọi đúng ở lần thứ nhất
Xác suất người đó gọi đúng là P(A1) = \(\dfrac{1}{10}\)
Xác suất người đó gọi không đúng là P(A1) = \(\dfrac{9}{10}\).
Gọi A2 là người đó gọi đúng ở lần thứ hai
Xác suất người đó gọi đúng là P(A2) = \(\dfrac{1}{9}\) .
Gọi A là người đó gọi đúng số điện thoại mà không phải thử quá hai lần, ta có (đpcm)
Chọn D
Gọi 2 số cuối là ab,là số điện thoại nên có đủ các chữ số từ 0 đến 9
Ta có a có 10 cách chọn, b khác a nên có 9 cách chọn. Vậy không gian mẫu có 9.10= 90 phần tử.
Vậy xá xuất gọi một lần dúng là 1/90
Đáp án D
Có 6 cặp số có tổng lớn hơn 7 là (5;3); (5;4); (6;2); (6;3); (6;4); (6;5) nên ứng với 12 số có hai chữ số khác nhau mà có tổng lớn hơn 7.
Mặt khác, số các số có hai chữ số khác nhau được lập từ các chữ số 1; 2; 3; 4; 5; 6 là = 30 số.
Do đó, xác suất là:
- Chỉ có 1 trường hợp nhập số vào là đúng.
- Nếu người đó bấm ngẫu nhiên hai số cuối phân biệt thì số cách bấm là \(A^2_{10}\).
- Xác suất cần tìm: \(\dfrac{1}{A^2_{10}}=\dfrac{1}{90}\).