Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow BC^2=6^2+8^2=100\)
hay BC=10(cm)
Vậy: BC=10cm
a) Xét ΔABC có
BD là đường phân giác ứng với cạnh AC(gt)
nên \(\dfrac{AD}{AB}=\dfrac{CD}{BC}\)(Tính chất tia phân giác của tam giác)
hay \(\dfrac{AD}{6}=\dfrac{CD}{10}\)
mà AD+CD=AC=8(cm)(D nằm giữa A và C)
nên Áp dụng tính chất của dãy tỉ số bằng nhau,ta được:
\(\dfrac{AD}{6}=\dfrac{CD}{10}=\dfrac{AD+CD}{6+10}=\dfrac{8}{16}=\dfrac{1}{2}\)
Do đó:
\(\left\{{}\begin{matrix}\dfrac{AD}{6}=\dfrac{1}{2}\\\dfrac{CD}{10}=\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AD=3\left(cm\right)\\CD=5\left(cm\right)\end{matrix}\right.\)
Vậy: AD=3cm; CD=5cm
Thể tích của hình lăng trụ đứng là:
\(5\times13\times10=650\left(cm^3\right)\)
Diện tích xung quanh của hình lăng trụ đứng là:
\(2\times10\times\left(13+5\right)=360\left(m^3\right)\)
Diện tích hai đáy của hình lăng trụ đứng là:
\(2\times5\times13=130\left(cm^3\right)\)
Diện tích toàn phần của hình lăng trụ đứng là:
\(360+130=490\left(cm^3\right)\)
Bài 2 :
a) Xét \(\Delta A'B'C'\sim\Delta ABC\) có :
\(\dfrac{A'B'}{AB}=\dfrac{A'C'}{AC}=\dfrac{B'C'}{BC}\left(\Delta A'B'C'\sim\Delta ABC\right)\)
Hay : \(\dfrac{21,5+6}{21,5}=\dfrac{A'C'}{30,7}=\dfrac{B'C'}{25,3}\)
=> \(\dfrac{A'C'}{30,7}=\dfrac{B'C'}{25,3}=\dfrac{27,5}{21,5}\)
=> \(\left\{{}\begin{matrix}A'C'=\dfrac{27,5.30,7}{21,5}\approx29,27\left(cm\right)\\B'C'=\dfrac{27,5.25,3}{21,5}\approx32,36\left(cm\right)\end{matrix}\right.\)
Vậy các cạnh của \(\Delta A'B'C'\) có độ dài là :
\(A'B'=27,5cm\)
\(A'C'\approx29,27cm\)
\(B'C'\approx32,36cm\)
b) Ta có : \(\dfrac{A'B'}{AB}=\dfrac{A'C'}{AC}=\dfrac{B'C'}{BC}\left(\Delta A'B'C'\sim\Delta ABC\right)\)
Hay : \(\dfrac{21,5-10,5}{21,5}=\dfrac{A'C'}{30,7}=\dfrac{B'C'}{25,3}\)
=> \(\dfrac{A'C'}{30,7}=\dfrac{B'C'}{25,3}=\dfrac{11}{21,5}\)
=> \(\left\{{}\begin{matrix}A'C'=\dfrac{11.30,7}{21,5}\approx15,71\left(cm\right)\\B'C'=\dfrac{11.25,3}{21,5}=12,94\left(cm\right)\end{matrix}\right.\)
Vậy các cạnh của \(\Delta A'B'C'\) có độ dài là :
\(A'B'=11cm\)
\(A'C'\approx15,71cm\)
\(B'C'\approx12,94cm\)
Xét \(\Delta A'B'C',\Delta ABC\) có:
\(\dfrac{A'B'}{AB}=\dfrac{A'C'}{AC}=\dfrac{B'C'}{BC}\left(\Delta A'B'C'\sim\Delta ABC\right)\)
Hay : \(\dfrac{6,5}{13}=\dfrac{A'C'}{17}=\dfrac{B'C'}{15}\)
=> \(\left\{{}\begin{matrix}A'C'=\dfrac{6,5.17}{13}=8,5\left(cm\right)\\B'C'=\dfrac{6,5.15}{13}=7,5\left(cm\right)\end{matrix}\right.\)
a) Xét \(\Delta A'B'C',\Delta ABC\) có:
\(\dfrac{A'B'}{AB}=\dfrac{A'C'}{AC}=\dfrac{B'C'}{BC}\left(\Delta A'B'C'\sim\Delta ABC\right)\)
Hay : \(\dfrac{16,2+10,8}{16,2}=\dfrac{A'C'}{32,7}=\dfrac{B'C'}{24,3}\)
=> \(\dfrac{A'C'}{32,7}=\dfrac{B'C'}{24,3}=\dfrac{27}{16,2}\)
=> \(\left\{{}\begin{matrix}A'C'=\dfrac{27.32,7}{16,2}=54,5\left(cm\right)\\B'C'=\dfrac{27.24,3}{16,2}=40,5\left(cm\right)\end{matrix}\right.\)
Vậy các cạnh của \(\Delta A'B'C'\) có độ dài là:
\(A'B'=27cm\)
\(A'C'=54,5cm\)
\(B'C'=40,5cm\)
b) Ta có : \(\dfrac{A'B'}{AB}=\dfrac{A'C'}{AC}=\dfrac{B'C'}{BC}\left(\Delta A'B'C'\sim\Delta ABC-gt\right)\)
Hay : \(\dfrac{16,2-5,4}{16,2}=\dfrac{A'C'}{32,7}=\dfrac{B'C'}{24,3}\)
=> \(\dfrac{A'C'}{32,7}=\dfrac{B'C'}{24,3}=\dfrac{10,8}{16,2}\)
=> \(\left\{{}\begin{matrix}A'C'=\dfrac{10,8.32,7}{16,2}=21,8\left(cm\right)\\B'C'=\dfrac{10,8.24,3}{16,2}=16,2\left(cm\right)\end{matrix}\right.\)
Vậy các cạnh của \(\Delta A'B'C'\) có độ dài là :
\(A'B'=10,8cm\)
\(A'C'=21,8cm\)
\(B'C'=16,2cm\)
Pythagorean theorem: \(AD=\sqrt{BD^2-AB^2}=4\) (cm)
\(\Rightarrow BC=AD=4\left(cm\right)\)
\(CC'=\sqrt{BC'^2-BC^2}=4\sqrt{2}\)
The lateral surface area: \(2CC'.\left(BC+AB\right)=56\sqrt{2}\left(cm^2\right)\)
Chọn B