K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 7 2018

Đề là cắt các cạnh AB và AC , ko phải BC và AC

Từ M kẻ MM' \(\perp\) B'C'

Xét tam giác AA'I và tam giác MM'I ( AA'I =MM'I =90) , co :

AIA'=MIM' (đối đỉnh )

AI = IM ( gt)

=> Tam giác AA'I = Tam giác MM'I (c . huyen - gn)

=> AA' = MM'

Xet tg BB'CC' , co :

BB'\(\perp\) B'C'

CC' \(\perp\) B'C'

=> BB' // CC'

=> BB'CC' là hình thang

Ta co :

MM' \(\perp\) B'C'

CC' \(\perp\) B'C'

Ma CC' // BB'

=> MM' // CC' // BB'

Xet hinh thang BB'CC' , co :

MM'//CC' //BB' (cmt)

BM = MC (gt) (1)

=> B'M' = M'C' (2)

Từ (1) vả (2) => MM' là đường trung bình của hình thang BB'CC'

=> MM' =\(\dfrac{CC'+BB'}{2}\)

Mặt khác , ta có : MM' = AA' (cmt)

=> AA' =\(\dfrac{BB'+CC'}{2}\) (dpcm)

24 tháng 7 2018

Hình thang

Bài 2: 

a: Gọi K là trung điểm của DC

Xét ΔBDC có 

M là trung điểm của BC

K là trung điểm của DC

Do đó: MK là đường trung bình của ΔBDC

Suy ra: MK//BD và \(MK=\dfrac{BD}{2}\)

hay MK//ID

Xét ΔAMK có 

I là trung điểm của AM

ID//MK

Do đó: D là trung điểm của AK

Suy ra: AD=DK

mà DK=KC

nên AD=DK=KC

hay \(AC=AD+DK+DC=3\cdot AD\)

b: Xét ΔAMK có 

I là trung điểm của AM

D là trung điểm của AK

Do đó: ID là đường trung bình của ΔAMK

Suy ra: \(ID=\dfrac{MK}{2}\)

hay MK=2ID

mà \(MK=\dfrac{BD}{2}\)

nên \(\dfrac{BD}{2}=2\cdot ID\)

hay \(ID=\dfrac{1}{4}\cdot BD\)

27 tháng 8 2021

Xin lời giải bài 1 vs ạ

 

17 tháng 10 2021

Bài 1:

Gọi E là trung điểm AG và AD là trung tuyến

Mà G là trọng tâm nên \(AE=EG=GD=\dfrac{1}{3}AD\)

Gọi E' và D' lần lượt là hình chiếu của E và D lên d

Ta có AA'//BB'//CC'//DD'//EE'//GG' (cùng vuông góc với d)

Xét hình thang AA'G'G có E là trung điểm AG và EE'//AA'//GG' nên E' là trung điểm A'G'

Do đó EE' là đtb hình thang AA'G'G

Do đó \(EE'=\dfrac{AA'+GG'}{2}\left(1\right)\)

Xét hình thang BB'C'C có D là trung điểm BC và DD'//BB'//CC' nên D' là trung điểm B'C'

Do đó DD' là đtb hình thang BB'C'C

Do đó \(DD'=\dfrac{BB'+CC'}{2}\left(2\right)\)

Xét hình thang EE'D'D có G là trung điểm ED và EE'//DD'//GG' nên G' là trung điểm E'D'

Do đó GG' là đtb hình thang EE'D'D

Do đó \(2GG'=EE'+DD'\left(3\right)\)

Từ \(\left(1\right)\left(2\right)\left(3\right)\Rightarrow2GG'=\dfrac{AA'+GG'+BB'+CC'}{2}\)

\(\Rightarrow4GG'=AA'+BB'+GG'+CC'\\ \Rightarrow3GG'=AA'+BB'+CC'\\ \Rightarrow GG'=\dfrac{AA'+BB'+CC'}{3}\)

E sửa lại cái đề đi nha

17 tháng 10 2021

Kẻ MN đối ME sao cho \(MN=ME\); DE cắt AB tại F

Mà \(AM=MD;\widehat{AMN}=\widehat{EMD}\left(đối.đỉnh\right)\)

Do đó \(\Delta AMN=\Delta DME\left(c.g.c\right)\)

\(\Rightarrow\widehat{ANM}=\widehat{MED};AN=DE\)

Mà 2 góc này ở vị trí so le trong nên AN//DE

Vì tg ABC đều nên \(\widehat{FAD}=60^0;\widehat{ACB}=60^0\)

Mà tg AFD vuông tại F nên \(\widehat{ADF}=90^0-\widehat{FAD}=30^0\)

Do đó \(\widehat{ADF}=\widehat{EDC}=30^0\left(đối.đỉnh\right)\)

Ta có \(\widehat{ECD}=\widehat{ECB}-\widehat{ACB}=90^0-60^0=30^0\Rightarrow\widehat{ECD}=\widehat{EDC}\)

Do đó tg EDC cân tại E nên \(ED=EC\)

\(\Rightarrow EC=AN\)

Ta có AN//DE;DE⊥AB nên AN⊥AB

Vì \(\left\{{}\begin{matrix}\widehat{NAB}=\widehat{ECB}=90^0\\AN=EC\\AB=AC\end{matrix}\right.\) nên \(\Delta ANB=\Delta CEB\left(2.cgv\right)\)

\(\Rightarrow AB=AE\left(1\right);\widehat{NBA}=\widehat{EBC}\\ \Rightarrow\widehat{NBA}+\widehat{ABE}=\widehat{EBC}+\widehat{ABE}=\widehat{ABC}=60^0\left(2\right)\)

\(\left(1\right)\left(2\right)\Rightarrow\Delta BNE\) đều 

Mà BM là trung tuyến \(\left(NM=ME\right)\) nên cũng là p/g

Vậy \(\widehat{MBE}=\dfrac{1}{2}\widehat{NBE}=30^0\)

27 tháng 8 2021

undefined

27 tháng 8 2021

Bố sung cho mk làDD' là dg tb "hình thang" C'B'CB nhé

Bài 2: Điểm D ở đâu vậy bạn?

26 tháng 8 2021

Mình mới sửa lại đề r ak