K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 4 2019

Giải bài 7 trang 27 sgk Hình học 10 | Để học tốt Toán 10

A’ là trung điểm của BC Giải bài 7 trang 27 sgk Hình học 10 | Để học tốt Toán 10

B’ là trung điểm của AC Giải bài 7 trang 27 sgk Hình học 10 | Để học tốt Toán 10

C’ là trung điểm của BA Giải bài 7 trang 27 sgk Hình học 10 | Để học tốt Toán 10

Gọi G là trọng tâm ΔABC và G’ là trọng tâm ΔA’B’C’

Ta có :

Giải bài 7 trang 27 sgk Hình học 10 | Để học tốt Toán 10

Vậy G ≡ G’ (đpcm)

26 tháng 4 2017

A B C A' B' C' a)Do A',B',C' là trung điểm BC,CA,AB=> A'B' song song với AB,B'C'song song với BC,C'A' song song với CA

\(\overrightarrow{A'B'}=\left(6;3\right)\) => VTPT của đường thẳng AB là: \(\overrightarrow{n}=\left(1;-2\right)\)

và C' thuộc (AB)=>Phương trình đường thẳng AB là:

(AB): x-2y-6=0

Tương tự ta có phương trình đường thẳng BC là:

(BC): x+4=0

Tọa độ điểm B là nghiệm hệ

\(\left\{{}\begin{matrix}\text{x-2y-6=0}\\x+4=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-4\\y=-5\end{matrix}\right.\)

=>B(-4;-5)

A'(-4;1) là TĐ của BC => tọa độ C(-4;7)

C'(2;-2) là TĐ của AB =>tọa độ A(8;1)

b) Gọi tọa độ trọng tâm G của tam giác A'B'C' là G(x;y)

=>\(\overrightarrow{GA'}+\overrightarrow{GB'}+\overrightarrow{GC'}=0\)

=>\(\left\{{}\begin{matrix}\left(-4-x\right)+\left(2-x\right)+\left(2-x\right)=0\\\left(1-y\right)+\left(4-y\right)+\left(-2-y\right)=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=1\end{matrix}\right.\)

=>G(0;1)

Thay vào tính

Ta có:\(\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}\) =(8-4-4;1-1+7-1-5-1)=(0;0)

=>G là trọng tâm tam giác ABC=>ĐPCM

13 tháng 4 2016

A’ là trung điểm của cạnh BC nên -4 =  (xB+ xC)

=> xB+ x= -8                        (1)

Tương tự ta có  xA+ x= 4         (2)

                       xB+ xC = 4          (3)  

=>  xA+ xB+ xC =0                            (4)

Kết hợp (4) và (1) ta có:  xA= 8

             (4) và (2) ta có:  xB= -4

               (4) và (3) ta có: xC = -4

Tương tự ta tính được: yA = 1; yB = -5; yC = 7.

Vậy A(8;1), B(-4;-5), C(-4; 7).

Gọi G la trọng tâm tam giác ABC thì 

xG= 0;        yG =  = 1  => G(0,1).

xG’;         yG’ =  = 1 => G'(0;1)

Rõ ràng G và G’ trùng nhau.

Chọn A

a: vecto AB=(1;1)

vecto AC=(2;6)

vecto BC=(1;5)

b: \(AB=\sqrt{1^2+1^2}=\sqrt{2}\)

\(AC=\sqrt{2^2+6^2}=2\sqrt{10}\)

\(BC=\sqrt{1^2+5^2}=\sqrt{26}\)

=>\(C=\sqrt{2}+2\sqrt{10}+\sqrt{26}\)

c: Tọa độ trung điểm của AB là:

x=(1+2)/2=1,5 và y=(-1+0)/2=-0,5

Tọa độ trung điểm của AC là;

x=(1+3)/2=2 và y=(-1+5)/2=4/2=2

Tọa độ trung điểm của BC là:

x=(2+3)/2=2,5 và y=(0+5)/2=2,5

d: ABCD là hình bình hành

=>vecto AB=vecto DC

=>3-x=1 và 5-y=1

=>x=2 và y=4

17 tháng 6 2017