K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 9 2016

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\frac{x}{2}=\frac{y}{4}=\frac{z}{6}=\frac{x-y+z}{2-4+6}=\frac{8}{4}=2\)

\(\Rightarrow\frac{x}{2}=2\Rightarrow x=4\)

\(\Rightarrow\frac{y}{4}=2\Rightarrow y=8\)

\(\Rightarrow\frac{z}{6}=2\Rightarrow z=12\)

12 tháng 9 2016

Áp dụng tc dãy tỉ:

\(\frac{x}{2}=\frac{y}{4}=\frac{z}{6}=\frac{x-y+z}{2-4+6}=\frac{8}{4}=2\)

\(\Rightarrow\begin{cases}\frac{x}{2}=2\\\frac{y}{4}=2\\\frac{z}{6}=2\end{cases}\)\(\Rightarrow\begin{cases}x=4\\y=8\\z=12\end{cases}\)

11 tháng 8 2016

1, ta co \(\frac{x}{5}=\frac{y}{6}=\frac{x}{20}=\frac{y}{24}\)

\(\frac{y}{8}=\frac{z}{7}=\frac{y}{24}=\frac{z}{21}\)

=>\(\frac{x}{20}=\frac{y}{24}=\frac{z}{21}=\frac{x+y-z}{20+24-21}=\frac{69}{23}=3\)

=>\(x=3\cdot20=60\)

    \(y=3\cdot24=72\)

    \(z=3\cdot21=63\)

11 tháng 8 2016

3. ta co \(\frac{x}{15}=\frac{y}{7}=\frac{z}{3}=\frac{t}{1}=\frac{x+y-z+t}{15-7+3-1}=\frac{10}{10}=1\)

=> \(x=1\cdot15=15\)

     \(y=1\cdot7=7\)

     \(z=1\cdot3=3\)

     \(t=1\cdot1=1\)

30 tháng 9 2016

Ta có: x/2=y/4=z/6

Nên: x-y+z/2-4+6=8/4

  Suy ra: x/2 = 8/4 và x=4

y/4=8/4 và y=8

z/6=8/4 và z=6

30 tháng 9 2016

Áp dụng tính chất dãy tỉ số bằng nhau , ta có : 

\(\frac{x}{2}=\frac{y}{4}=\frac{z}{6}\Rightarrow\frac{x}{2}=\frac{-y}{-4}=\frac{z}{6}=\frac{x+\left(-y\right)+z}{2+\left(-4\right)+6}=\frac{8}{4}=2\)

=> x = 2.2 = 4 

     y = 4.2 = 8

     z = 6.2 = 12 

31 tháng 8 2016

a)Ta có:

\(3x=2y\Rightarrow\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x}{10}=\frac{y}{15}\left(1\right)\)

\(7y=5z\Rightarrow\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{y}{15}=\frac{z}{21}\left(2\right)\)

        Từ (1) và (2) suy ra:\(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}\)

    Áp dụng tính chất dãy tỉ số bằng nhau ta có:

 \(\Rightarrow\frac{x}{10}=\frac{y}{15}=\frac{z}{21}=\frac{x-y+z}{10-15+21}=\frac{96}{16}=6\)

\(\Rightarrow\begin{cases}\frac{x}{10}=6\\\frac{y}{15}=6\\\frac{z}{21}=6\end{cases}\)\(\Rightarrow\begin{cases}x=60\\y=90\\z=126\end{cases}\)

            Vậy x=60;y=90;z=126

31 tháng 8 2016

b)Vì \(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x}{6}=\frac{y}{12}\left(1\right)\)

         \(\frac{y}{3}=\frac{z}{5}\Rightarrow\frac{y}{12}=\frac{z}{20}\left(2\right)\)

    Từ (1) và (2) suy ra:\(\frac{x}{6}=\frac{y}{12}=\frac{z}{20}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

  \(\Rightarrow\frac{x}{6}=\frac{y}{12}=\frac{z}{20}=\frac{2x}{12}=\frac{3y}{36}=\frac{z}{20}=\frac{2x-3y+z}{12-36+20}=\frac{6}{-4}\)

\(\Rightarrow\begin{cases}\frac{x}{6}=-\frac{6}{4}\\\frac{y}{12}=-\frac{6}{4}\\\frac{z}{20}=-\frac{6}{4}\end{cases}\)\(\Rightarrow\begin{cases}x=-9\\y=-18\\z=-30\end{cases}\)

             Vậy x=-9;y=-18;z=-30

8 tháng 8 2017

bn ơi,vì tất cả bài tập này khá nhiều và cx khá khó nên sẽ ko ai trả lời đâu,bn nên đăng từng bài một thôi nhé,nếu bn đăng như mk nói thì mà ko có ai trả lời thì hãy viết bài toán đó trên google để tra nhé,chúc bn làm bài tốt

8 tháng 8 2017

thank bn

10 tháng 8 2016

b) Theo đề bài, ta có:

\(\frac{x}{2}=\frac{y}{3};\frac{y}{2}=\frac{z}{5}\) và x+y+z=50

\(\Rightarrow\frac{x}{4}=\frac{y}{6};\frac{y}{6}=\frac{z}{15}\)

Áp dụng tính chất của dãy tỉ số bằng nhau:

\(\frac{x}{4}=\frac{y}{6}=\frac{z}{15}=\frac{x+y+z}{4+6+15}=\frac{50}{25}=2\)

  • \(\frac{x}{4}=2.4=8\)
  • \(\frac{y}{6}=2.6=12\)
  • \(\frac{z}{15}=2.15=30\)

Vậy x=8,y=12,z=30.

e) Theo đề bài, ta có:

\(\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=\frac{1}{x+y+z}\)

Áp dụng tính chất của dãy tỉ số bằng nhau:

\(\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=\frac{1}{x+y+z}=\)

\(=\frac{\left(y+z+1\right)+\left(x+z+2\right)+\left(x+y-3\right)}{x+y+z}=\)

\(=\frac{2\left(x+y+z\right)}{x+y+z}=2\) (vì x+y+z khác 0). Do đó x+y+z=0,5

Thay kết quả này vào đề bài ta được:

\(\frac{0,5-x+1}{x}=\frac{0,5-y+2}{y}=\frac{0,5-z-3}{z}=2\)

tức là: \(\frac{1,5-x}{x}=\frac{2,5-y}{y}=\frac{\left(-2,5\right)-z}{z}=2\)

 Vậy \(x=\frac{1}{2},y=\frac{5}{6},z=\frac{\left(-5\right)}{6}\)

hihi ^...^ vui ^_^

11 tháng 8 2016

mà bạn chắc đúng k vậy

 

14 tháng 1 2018

+)Xét x+y+z khác 0

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\frac{x}{y+z+1}=\frac{y}{x+z+2}=\frac{z}{x+y-3}=\frac{x+y+z}{y+z+1+x+z+2+x+y-3}=\frac{x+y+z}{2\left(x+y+z\right)}=\frac{1}{2}\)

=>x+y+z=1/2

\(\Rightarrow\hept{\begin{cases}2x=y+z+1\\2y=x+z+2\\2z=x+y-3\end{cases}\Rightarrow\hept{\begin{cases}3x=x+y+z+1\\3y=x+y+z+2\\3z=x+y+z-3\end{cases}\Rightarrow}\hept{\begin{cases}3x=\frac{1}{2}+1\\3y=\frac{1}{2}+2\\3z=\frac{1}{2}-3\end{cases}\Rightarrow}\hept{\begin{cases}x=\frac{1}{2}\\y=\frac{5}{6}\\z=\frac{-5}{6}\end{cases}}}\)

+)Xét x+y+z=0

=>x/y+z+1=y/x+z+2=z/x+y-3=0

=>x=y=z=0