K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 1 2018

+)Xét x+y+z khác 0

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\frac{x}{y+z+1}=\frac{y}{x+z+2}=\frac{z}{x+y-3}=\frac{x+y+z}{y+z+1+x+z+2+x+y-3}=\frac{x+y+z}{2\left(x+y+z\right)}=\frac{1}{2}\)

=>x+y+z=1/2

\(\Rightarrow\hept{\begin{cases}2x=y+z+1\\2y=x+z+2\\2z=x+y-3\end{cases}\Rightarrow\hept{\begin{cases}3x=x+y+z+1\\3y=x+y+z+2\\3z=x+y+z-3\end{cases}\Rightarrow}\hept{\begin{cases}3x=\frac{1}{2}+1\\3y=\frac{1}{2}+2\\3z=\frac{1}{2}-3\end{cases}\Rightarrow}\hept{\begin{cases}x=\frac{1}{2}\\y=\frac{5}{6}\\z=\frac{-5}{6}\end{cases}}}\)

+)Xét x+y+z=0

=>x/y+z+1=y/x+z+2=z/x+y-3=0

=>x=y=z=0

18 tháng 11 2015

\(\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=\frac{\left(y+z+1\right)+\left(x+z+2\right)+\left(x+y-3\right)}{x+y+z}=\frac{2\left(x+y+z\right)}{x+y+z}=2=\frac{1}{x+y+z}\)

=> x+y+z =1/2

+y+z+1=2x  => x+y+z +1 =3x => 3x =1/2 +1 =3/2 => x =1/2

+x+y+2 =2y  => x+y+z+2 =3y  => 3y = 1/2 +2 = 5/2 => y =5/6

+z =1/2 -x-y =1/2 -1/2 -5/6 =-5/6

18 tháng 11 2015

lai 1 thag nua dug chieu xin lik e = cah do nua a T_T

 

30 tháng 10 2017

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\frac{x}{y+z}=\frac{y}{z+x}=\frac{z}{x+y}\Rightarrow\frac{y+z}{x}=\frac{z+x}{y}=\frac{x+y}{z}=\frac{y+z+z+x+x+y}{x+y+z}\)\(=\frac{2\left(x+y+z\right)}{x+y+z}=2\)

\(\Rightarrow\frac{y+z}{x}+\frac{z+x}{y}+\frac{x+y}{z}=2+2+2=6\)

Vì bài toán không yêu cầu tìm x; y; z nên ta có cách giải ngắn gọn thế thôi nha bn.

30 tháng 10 2017

Kết quả bằng 6 nha 

k tui nha

Thanks

19 tháng 3 2018

Áp dụng tính chất dãy tỉ số bằng nhau ta có : 

\(\frac{y+z-x}{x}=\frac{z+x-y}{y}=\frac{x+y-z}{z}=\frac{y+z-x+z+x-y+x+y-z}{x+y+z}=\frac{x+y+z}{x+y+z}=1\)

Do đó : 

\(\frac{y+z-x}{x}=1\)\(\Rightarrow\)\(2x=y+z\)

\(\frac{z+x-y}{y}=1\)\(\Rightarrow\)\(2y=x+z\)

\(\frac{x+y-z}{z}=1\)\(\Rightarrow\)\(2z=x+y\)

Suy ra : 

\(P=\left(1+\frac{x}{y}\right)\left(1+\frac{y}{z}\right)\left(1+\frac{z}{x}\right)=\frac{x+y}{x}.\frac{y+z}{z}.\frac{x+z}{x}=\frac{2z}{y}.\frac{2x}{z}.\frac{2y}{x}=\frac{8xyz}{xyz}=8\)

Vậy \(P=8\)

Đề hơi sai 

4 tháng 1 2016

Áp dụng ...............ta có :

x/z+y+1=y/x+z+1=z/x+y-2=1/2

+,x/z+y+1=1/2=>2x=z+y+1

                      =>2x-1=z+y

lại có x+y+z=1/2(1)=>x+2x-1=1/2

                             =>3x=1/2+1=3/2

                             =>x=3/2 /3=1/2

+,y/x+z+1=1/2=>2y=x+z+1

                      =>2y-1=x+z

 Từ 1    =>2y-1+y=x+y+z

            =>3y=1/2+1=3/2

           =>y=3/2 /2 = 1/2

Thãy=1/2;y=1/2 vào 1 ta có :

1/2+1/2+z=1/2

z=1/2-1/2-1/2=-1/2

4 tháng 1 2016

vận dụng dãy tỉ số bằng nhau pp ăn cơm

24 tháng 10 2017

mk ko bt 123