K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
14 tháng 8 2021

a. Phương trình hoành độ giao điểm:

\(3x-5=-2x\)

\(\Leftrightarrow5x=5\)

\(\Rightarrow x=1\)

Thế vào \(y=3x-5\Rightarrow y=3.1-5=-2\)

Vậy \(A\left(1;-2\right)\)

b. Gọi phương trình d có dạng \(y=ax+b\)

Do d song song \(d_1\Rightarrow a=1\Rightarrow y=x+b\)

Do d qua A nên: \(y_A=x_A+b\Leftrightarrow-2=1+b\Rightarrow b=-3\)

Vậy pt d có dạng: \(y=x-3\)

6 tháng 8 2021

a, \(2\sqrt{3}-\sqrt{4+x^2}=0\Leftrightarrow\sqrt{4+x^2}=2\sqrt{3}\)

\(\Leftrightarrow x^2+4=12\Leftrightarrow x^2=8\Leftrightarrow x=\pm2\sqrt{2}\)

b, \(\sqrt{16x+16}-\sqrt{9x+9}=0\)ĐK : x >= -1 

\(\Leftrightarrow4\sqrt{x+1}-3\sqrt{x+1}=0\Leftrightarrow\sqrt{x+1}=0\Leftrightarrow x+1=0\Leftrightarrow x=-1\)

c, \(\sqrt{4\left(x+2\right)^2}=8\Leftrightarrow2\left|x+2\right|=8\Leftrightarrow\left|x+2\right|=4\)

TH1 : \(x+2=4\Leftrightarrow x=2\)

TH2 : \(x+2=-4\Leftrightarrow x=-6\)

c: Ta có: \(\sqrt{4\left(x+2\right)^2}=8\)

\(\Leftrightarrow\left|x+2\right|=4\)

\(\Leftrightarrow\left[{}\begin{matrix}x+2=4\\x+2=-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-6\end{matrix}\right.\)

8 tháng 8 2021

ta có sinB=\(\dfrac{AH}{AB}\)\(\Rightarrow\)AH=AB.sinB=3,6.sin62=3,18

BH=\(\sqrt{AB^2-AH^2}\)(pytago)=\(\sqrt{3,6^2-3,18^2}\)=1,69

\(_{\widehat{C}}\)=90-\(\widehat{B}\)=90-62=28\(^0\)

sinC=\(\dfrac{AB}{BC}\)\(\Rightarrow\)BC=\(\dfrac{AB}{sinC}\)=\(\dfrac{3,6}{sin28}\)=7,67

mà:CH=BC-BH=7,67-1,69=5,98

AC=\(\sqrt{BC^2-AB^2}\)(pytago)=\(\sqrt{7,67^2-3,6^2}\)=6.77

Bài 1: 

a: Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=6^2+8^2=100\)

hay BC=10(cm)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}BH=3.6\left(cm\right)\\CH=6.4\left(cm\right)\end{matrix}\right.\)

b: Áp dụng hệ thức lượng trong tam giác vuông vào ΔAHB vuông tại H có HF là đường cao ứng với cạnh huyền AB, ta được:

\(AF\cdot AB=AH^2\left(1\right)\)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔAHC vuông tại H có HE là đường cao ứng với cạnh huyền AC, ta được:

\(AE\cdot AC=AH^2\left(2\right)\)

Từ (1) và (2) suy ra \(AF\cdot AB=AE\cdot AC\)

21 tháng 12 2021

b: Tọa độ giao điểm là:

\(\left\{{}\begin{matrix}\dfrac{1}{2}x-5=-\dfrac{3}{2}x-1\\y=\dfrac{1}{2}x-5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x=4\\y=\dfrac{1}{2}x-5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=-4\end{matrix}\right.\)

1) Ta có: \(A=\dfrac{2x^2+4}{1-x^2}-\dfrac{1}{1+\sqrt{x}}-\dfrac{1}{1-\sqrt{x}}\)

\(=\dfrac{-2x^2-4-\left(\sqrt{x}-1\right)\left(x+1\right)+\left(\sqrt{x}+1\right)\left(x+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)\left(x+1\right)}\)

\(=\dfrac{-2x^2-4-x\sqrt{x}-\sqrt{x}+x+1+x\sqrt{x}+\sqrt{x}+x+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)\left(x+1\right)}\)

\(=\dfrac{-2x^2-2x-2}{x^2-1}\)

17 tháng 9 2021

1.\(sin^2\alpha+cos^2\alpha=\left(\dfrac{AC}{BC}\right)^2+\left(\dfrac{AB}{BC}\right)^2\)

=\(\dfrac{AC^2+AB^2}{BC^2}=\dfrac{BC^2\left(pytago\right)}{BC^2}=1\)

2.ta có \(tan\alpha=\dfrac{AC}{AB}\)

\(\dfrac{sin\alpha}{cos\alpha}=\dfrac{\dfrac{AC}{BC}}{\dfrac{AB}{BC}}=\dfrac{AC}{AB}\)

\(\Rightarrow tan\alpha=\dfrac{sin\alpha}{cos\alpha}\)

3.ta có:\(1+tan^2\alpha=1+\left(\dfrac{sin\alpha}{cos\alpha}\right)^2\)

=\(\dfrac{sin^2\alpha+cos^2\alpha}{cos^2\alpha}\)=\(\dfrac{1}{cos^2\alpha}\)

4.ta có :\(cot\alpha=\dfrac{AB}{AC}\)

\(\dfrac{cos\alpha}{sin\alpha}=\dfrac{\dfrac{AB}{BC}}{\dfrac{AC}{BC}}=\dfrac{AB}{AC}\)

\(\Rightarrow cot\alpha=\dfrac{cos\alpha}{sin\alpha}\)

\(1+cot^2\alpha=1+\left(\dfrac{cos\alpha}{sin\alpha}\right)^2=\dfrac{sin^2\alpha+cos^2\alpha}{sin^2\alpha}\)=\(\dfrac{1}{sin^2a}\)