Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{2}{1.2}+\frac{2}{3.5}+\frac{2}{5.7}+......+\frac{2}{99.101}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+......+\frac{1}{99}-\frac{1}{100}\)
\(=1-\frac{1}{100}\)
\(=\frac{99}{100}\)
\(2A=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}=\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}\)
\(=1-\frac{1}{11}=\frac{10}{11}\)
\(\Rightarrow A=\frac{5}{11}\)
\(2B=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{2017.2019}=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2017}-\frac{1}{2019}\)
\(=1-\frac{1}{2019}=\frac{2018}{2019}\Rightarrow B=\frac{1009}{2019}\)
\(\frac{2}{7}C=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{2017.2019}=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2017}-\frac{1}{2019}\)
\(=1-\frac{1}{2019}=\frac{2018}{2019}\Rightarrow C=\frac{2018}{2019}:\frac{2}{7}=\frac{7063}{2019}\)
Ta có 1/2*3=1/2-1/3;
1/3*4=1/3-1/4
......................(tương tự với các số khác)
1/149*150=1/149-1/150
=>A=1/2-1/3+1/3-1/4+1/4-1/5+...-1/149+1/149-1/150=1/2-1/150
A=75/150-1/150=74/150=37/75
Vậy A= 37/75
a) A = 2 + 22 + 23 + ... + 2100
2A = 22 + 23 + 24 + ... + 2101
2A - A = (22 + 23 + 24 + ... + 2101) - (2 + 22 + 23 + ... + 2100)
A = 2101 - 2
b) B = 1 + 3 + 32 + ... + 3255
3B = 3 + 32 + 33 + ... + 3256
3B - B = (3 + 32 + 33 + ... + 3256) - (1 + 3 + 32 + ... + 3255)
2B = 3256 - 1
B = \(\frac{3^{256}-1}{2}\)
c) C = 1 + 4 + 42 + ... + 4100
4C = 4 + 42 + 43 + ... + 4101
4C - C = (4 + 42 + 43 + ... + 4101) - (1 + 4 + 42 + ... + 4100)
3C = 4101 - 1
C = \(\frac{4^{101}-1}{3}\)
d) D = 1 + 5 + 52 + ... + 51000
5D = 5 + 52 + 53 + ... + 51001
5D - D = (5 + 52 + 53 + ... + 51001) - (1 + 5 + 52 + ... + 51000)
4D = 51001 - 1
D = \(\frac{5^{1001}-1}{4}\)
https://dethihsg.com/de-thi-hoc-sinh-gioi-phong-gđt-hoang-hoa-2014-2015/
\(C=\frac{1}{5}+\frac{1}{5^2}+\frac{1}{5^3}+....+\frac{1}{5^{300}}\)
\(5C=1+\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{299}}\)
\(5C-C=1-\frac{1}{5^{300}}\)
\(4C=1-\frac{1}{5^{300}}\)
\(C=\frac{1-\frac{1}{5^{300}}}{4}\)
Bạn trả lời chi tiết hơn đi