K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 3 2021

1.

ĐKXĐ: \(x=2\)

Xét \(x=2\), bất phương trình vô nghiệm

\(\Rightarrow\) bất phương trình đã cho vô nghiệm

\(\Rightarrow\) Không tồn tại \(a,b\) thỏa mãn

Đề bài lỗi chăng.

NV
21 tháng 9 2019

ĐKXĐ: \(1\le x\le5\)

TH1: với \(x>4\Rightarrow\left\{{}\begin{matrix}\sqrt{-x^2+6x-5}\ge0\\8-2x< 0\end{matrix}\right.\) \(\Rightarrow\) BPT luôn đúng

\(\Rightarrow4< x\le5\)

TH2: Với \(1\le x\le4\Rightarrow8-2x>0\)

\(\Leftrightarrow-x^2+6x-5>\left(8-2x\right)^2\)

\(\Leftrightarrow5x^2-38x+69< 0\) \(\Rightarrow3< x< \frac{25}{6}\)

Kết hợp ĐK \(\Rightarrow3< x\le4\)

Vậy nghiệm của BPT đã cho là \(3< x\le5\)

27 tháng 12 2020

ĐK: \(x\in R\)

Đặt \(\sqrt{x^2-2x+2}=t\left(t\ge1\right)\)

\(pt\Leftrightarrow m=x^2-2x+2+2\sqrt{x^2-2x+2}-2\)

\(\Leftrightarrow m=f\left(t\right)=t^2+2t-2\)

Yêu cầu bài toán thỏa mãn khi \(m\ge minf\left(t\right)=f\left(1\right)=1\)

Vậy \(m\ge1\)

9 tháng 2 2023

Đặt \(t=\sqrt{10-x}+\sqrt{x-7}\) để làm gì vậy bạn? Đặt như vậy thì phương trình sẽ càng khó giải hơn á

Đk: \(-7\le x\le10\)

\(\sqrt{10-x}-\sqrt{x+7}+\sqrt{-x^2+3x+70}=1\)

\(\Leftrightarrow\sqrt{10-x}-\sqrt{x+7}+\sqrt{\left(10-x\right)\left(x+7\right)}=1\)

\(\Leftrightarrow\sqrt{10-x}\left(\sqrt{x+7}+1\right)-\left(\sqrt{x+7} +1\right)=0\)

\(\Leftrightarrow\left(\sqrt{x+7}+1\right)\left(\sqrt{10-x}-1\right)=0\)

Dễ thấy \(\sqrt{x+7}+1>0\). Do đó:

\(\sqrt{10-x}-1=0\Leftrightarrow x=9\left(nhận\right)\)

Thử lại ta có x=9 là nghiệm duy nhất của pt đã cho.

9 tháng 2 2023

`\sqrt{10-x}-\sqrt{x+7}+\sqrt{-x^2+3x+70}=1`     `ĐK: -7 <= x <= 10`

Đặt `\sqrt{10-x}-\sqrt{x+7}=t`

`<=>10-x+x+7-2\sqrt{(x+7)(10-x)}=t^2`

`<=>\sqrt{-x^2+3x+70}=17/2-[t^2]/2`

Khi đó ptr `(1)` có dạng: `t+17/2-[t^2]/2=1`

`<=>2t+17-t^2=2`

`<=>t^2-2t-15=0`

`<=>[(t=5),(t=-3):}`

`@t=5=>\sqrt{-x^2+3x+70}=17/2-5^2/2`

  `<=>\sqrt{-x^2+3x+70}=-4` (Vô lí)

`@t=-3=>\sqrt{-x^2+3x+70}=17/2-[(-3)^2]/2`

  `<=>-x^2+3x+70=16`

  `<=>[(x=9),(x=-6):}` (t/m)

Vậy `S={-6;9}`