Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn A.
Ta có
Phương trình đã cho thành
đây là phương trình đẳng cấp, ta có thể chia cả hai vế cho b > 0 như sau:
+) TH1.
+) TH2.
Do đó
Chọn C.
Điều kiện: 5x – 1 > 0 hay x > 0
Phương trình đã cho tương đương:
log2( 5x - 1) [log2( 5x - 1) + 1] = 2
Đặt t = log2(5x - 1), khi đó phuơng trình trở thành: t(t + 1) = 2
Suy ra t = 1 hoặc t = -2
Với t =1 ta có log2(5x - 1) = 1 nên 5x – 1 = 2; x = log53
Với t = -2ta có log2(5x - 1) = - 2 nên 5x – 1 = 2-2; x = log5(5/4)
Mặt khác x1 > x2 suy ra
Đáp án B
P T ⇔ log 2 2 x 2 - x + 2 m - 4 m 2 + log 2 x 2 + m x - 2 m 2 = 0
⇔ 2 x 2 - x + 2 m - 4 m 2 = x 2 + m x - 2 m 2 > 0
Điều kiện để pt đã cho có 2 nghiệm
Do đó
S = - 1 ; 0 ∪ 2 5 ; 1 2 ⇒ A = - 1 + 2 + 1 = 2
ĐKXĐ: \(x>-1\)
Bước quan trọng nhất là tách hàm
\(\Leftrightarrow log_2\sqrt{x+3}-2\sqrt{x+3}+\left(x+3\right)=log_2\left(x+1\right)-2\left(x+1\right)+\left(x+1\right)^2\)
Đến đây coi như xong \(\Rightarrow\sqrt{x+3}=x+1\Rightarrow x=1\)
Chọn B.
Phương trình
Do đó
Từ đó: