Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 9:
a: f(-4)=0
=>-4(m-1)+3m-1=0
=>-4m+4+3m-1=0
=>-m+3=0
=>m=3
b: f(-5)=-1
=>-5(m-1)+3m-1=-1
=>-5m+5+3m-1=-1
=>-2m+4=-1
=>-2m=-5
=>m=5/2
a) Đa thức \(f\left(x\right)\)có nghiệm là \(-1\)nên \(f\left(-1\right)=0\)
\(\Rightarrow\left(-1\right)^2-\left(m-1\right)\left(-1\right)+3m-2=0\)
\(\Leftrightarrow1+m-1+3m-2=0\)
\(\Leftrightarrow m=\frac{1}{2}\).
b) c) Làm tương tự a).
d) \(f\left(1\right)=g\left(2\right)\)
\(\Rightarrow1^2-\left(m-1\right).1+3m-2=2^2+\left(m+1\right).2-5m+1\)
\(\Leftrightarrow1-m+1+3m-2=4+2m+2-5m+1\)
\(\Leftrightarrow5m=7\)
\(\Leftrightarrow m=\frac{7}{5}\)
e) Làm tương tự d).
Câu 3:
Theo đề, ta có hệ phương trình:
\(\left\{{}\begin{matrix}2\cdot1+a+4=4-10-b\\2-a+4=25-25-b\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a+b=-6-4-2=-12\\-a+b=-6\end{matrix}\right.\)
=>a=-3; b=-9
a) Thay \(x=\frac{1}{2}\) vào đa thức với \(a=-\frac{1}{2};b=4\) ta có :
\(f\left(\frac{1}{2}\right)=\left(\frac{1}{2}\right)^3+\left(-\frac{1}{2}\right)\cdot\left(\frac{1}{2}\right)^2-4\cdot\frac{1}{2}+2=0\)
Vậy \(x=\frac{1}{2}\) là nghiệm của đa thức.
b) Theo bài ta có :
\(\left\{{}\begin{matrix}f\left(1\right)=0\\f\left(-2\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}1+a-b+2=0\\\left(-2\right)^3+a.\left(-2\right)^2-\left(-2\right).b+2=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a-b=-3\\4a+2b=6\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2a-2b=-6\\4a+2b=6\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=0\\b=3\end{matrix}\right.\)
c) Theo câu b) ta có : \(f\left(x\right)=x^3-3x+2\)
Để \(f\left(x\right)=x+2\Leftrightarrow x^3-3x+2=x+2\)
\(\Leftrightarrow x^3-4x=0\)
\(\Leftrightarrow x.\left(x^2-4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\pm2\end{matrix}\right.\)
Bài 4:
a: Ta có: ΔABC cân tại A
mà AH là đường cao
nên H là trung điểm của BC và AH là phân giác của góc BAC
b: Xét ΔAMH vuông tại M và ΔANHvuông tại N có
AH chung
góc MAH=góc NAH
Do đó: ΔAMH=ΔANH
Suy ra: AM=AN
\(f\left(1\right)=1^2-\left(m-1\right)1+3.1-2=1-m+1+3-2=-m+3\)
Đặt \(-m+3=0\Leftrightarrow m=3\)
Tương tự ...
d, Ta có : \(f\left(1\right)=-m+3\)
\(g\left(2\right)=2^2-2\left(m+1\right)2-5m+1=4-4m-4-5m+1=-9m+1\)
\(f\left(1\right)=g\left(2\right)\Leftrightarrow-m+3=-9m+1\Leftrightarrow8m+2=0\Leftrightarrow m=-\frac{1}{4}\)
Tương tự
Vì H(x) nhậ n x = -2 là nghiệm nên
H(-2) = 0 ⇒ -8a - 2a + 1 = 0 ⇒ -10a = -1 ⇒ a = 1/10. Chọn C