Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt biểu thức trên là A
-Trường hợp a chia hết b:
Ta có: A nguyên nên a^2 + b^2 chia hết ab
Do a chia hết b => a^2 chia hết ab. Mà a^2 + b^2 chia hết ab => b^2 chia hết ab <=> b chia hết a
=> a=b
=> (a^2+b^2)/ab= 2a^2/a^2=2
-Trường hợp a không chia hết b, hoặc b không chia hết a:
A= (a^2+b^2-2ab)/ab + 2= (a-b)^2/ab + 2
Do A nguyên nên (a-b)^2/ab nguyên <=> a-b chia hết ab
Mà a,b nguyên nên: a<b(a+1) <=> a−b<ab
Mà a-b chia hết ab => a−b≥ab
=> Phương trình vô nghiệm ở trường hợp này.
Vậy A chỉ thỏa mãn giá trị =2 khi và chỉ khi a=b với a,b thuộc N*
Đặt biểu thức trên là A
-Trường hợp a chia hết b:
Ta có: A nguyên nên a^2 + b^2 chia hết ab
Do a chia hết b => a^2 chia hết ab. Mà a^2 + b^2 chia hết ab => b^2 chia hết ab <=> b chia hết a
=> a=b
=> (a^2+b^2)/ab= 2a^2/a^2=2
-Trường hợp a không chia hết b, hoặc b không chia hết a:
A= (a^2+b^2-2ab)/ab + 2= (a-b)^2/ab + 2
Do A nguyên nên (a-b)^2/ab nguyên <=> a-b chia hết ab
Mà a,b nguyên nên: \(a< b\left(a+1\right)\) <=> \(a-b< ab\)
Mà a-b chia hết ab => \(a-b\ge ab\)
=> Phương trình vô nghiệm ở trường hợp này.
Vậy A chỉ thỏa mãn giá trị =2 khi và chỉ khi a=b với a,b thuộc N*
Đặt biểu thức trên là A
-Trường hợp a chia hết b:
Ta có: A nguyên nên a^2 + b^2 chia hết ab
Do a chia hết b => a^2 chia hết ab. Mà a^2 + b^2 chia hết ab => b^2 chia hết ab <=> b chia hết a
=> a=b
=> (a^2+b^2)/ab= 2a^2/a^2=2
-Trường hợp a không chia hết b, hoặc b không chia hết a:
A= (a^2+b^2-2ab)/ab + 2= (a-b)^2/ab + 2
Do A nguyên nên (a-b)^2/ab nguyên <=> a-b chia hết ab
Mà a,b nguyên nên: a<b(a+1) <=> a−b<ab
Mà a-b chia hết ab => a−b≥ab
=> Phương trình vô nghiệm ở trường hợp này.
Vậy A chỉ thỏa mãn giá trị =2 khi và chỉ khi a=b với a,b thuộc N*
ôi , vô cùng tks bạn nhá alibaba lúc nào đang bí thì có cậu giúp , cảm ơn nhiều :D
\(a^2-b^2=97\Leftrightarrow\left(a+b\right)\left(a-b\right)=1.97=97.1=\left(-1\right)\left(-97\right)=\left(-97\right)\left(-1\right)\)
giải hệ
a-b=1& a+b=97; a-b=97&a+b=1...
tìm được
a=49; b=48 => a^2+b^2
http://olm.vn/hoi-dap/question/766718.html
Từ đề bài ta suy ra: \(\left(a-b\right)\left(a+b\right)=97\).
Ta có 97 là số nguyên tố và 0 < a - b < a + b nên a - b = 1; a + b = 97.
Do đó \(a=\dfrac{1+97}{2}=49;b=\dfrac{97-1}{2}=48\)
\(\Rightarrow a^2+b^2=49^2+48^2=4705\).