Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt biểu thức trên là A
-Trường hợp a chia hết b:
Ta có: A nguyên nên a^2 + b^2 chia hết ab
Do a chia hết b => a^2 chia hết ab. Mà a^2 + b^2 chia hết ab => b^2 chia hết ab <=> b chia hết a
=> a=b
=> (a^2+b^2)/ab= 2a^2/a^2=2
-Trường hợp a không chia hết b, hoặc b không chia hết a:
A= (a^2+b^2-2ab)/ab + 2= (a-b)^2/ab + 2
Do A nguyên nên (a-b)^2/ab nguyên <=> a-b chia hết ab
Mà a,b nguyên nên: a<b(a+1) <=> a−b<ab
Mà a-b chia hết ab => a−b≥ab
=> Phương trình vô nghiệm ở trường hợp này.
Vậy A chỉ thỏa mãn giá trị =2 khi và chỉ khi a=b với a,b thuộc N*
Đặt biểu thức trên là A
-Trường hợp a chia hết b:
Ta có: A nguyên nên a^2 + b^2 chia hết ab
Do a chia hết b => a^2 chia hết ab. Mà a^2 + b^2 chia hết ab => b^2 chia hết ab <=> b chia hết a
=> a=b
=> (a^2+b^2)/ab= 2a^2/a^2=2
-Trường hợp a không chia hết b, hoặc b không chia hết a:
A= (a^2+b^2-2ab)/ab + 2= (a-b)^2/ab + 2
Do A nguyên nên (a-b)^2/ab nguyên <=> a-b chia hết ab
Mà a,b nguyên nên: a<b(a+1) <=> a−b<ab
Mà a-b chia hết ab => a−b≥ab
=> Phương trình vô nghiệm ở trường hợp này.
Vậy A chỉ thỏa mãn giá trị =2 khi và chỉ khi a=b với a,b thuộc N*
Dạng này nhìn mệt vãi:(
Do b > 0 nên chia hai vế của giả thiết cho b, ta được: \(a+\frac{2}{b}\le1\)
Bây giờ đặt \(a=x;\frac{2}{b}=y\). Bài toán trở thành:
Cho x, y là các số dương thỏa mãn \(x+y\le1\). Tìm Min:
\(P=x+y+\frac{1}{x^2}+\frac{8}{y^2}\). Quen thuộc chưa:v
Ko biết có tính sai chỗ nào không, nhưng hướng làm là vậy đó!
Đặt biểu thức trên là A
-Trường hợp a chia hết b:
Ta có: A nguyên nên a^2 + b^2 chia hết ab
Do a chia hết b => a^2 chia hết ab. Mà a^2 + b^2 chia hết ab => b^2 chia hết ab <=> b chia hết a
=> a=b
=> (a^2+b^2)/ab= 2a^2/a^2=2
-Trường hợp a không chia hết b, hoặc b không chia hết a:
A= (a^2+b^2-2ab)/ab + 2= (a-b)^2/ab + 2
Do A nguyên nên (a-b)^2/ab nguyên <=> a-b chia hết ab
Mà a,b nguyên nên: \(a< b\left(a+1\right)\) <=> \(a-b< ab\)
Mà a-b chia hết ab => \(a-b\ge ab\)
=> Phương trình vô nghiệm ở trường hợp này.
Vậy A chỉ thỏa mãn giá trị =2 khi và chỉ khi a=b với a,b thuộc N*